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Abstract

Background: The etiology between homocysteine and polycystic ovary syndrome (PCOS) is unclear. In humans,
the level of homocysteine is mainly affected by two enzymes: methylene tetrahydrofolate reductase (MTHFR) and
methionine synthase reductase (MTRR). While the activity of these two enzymes is mainly affected by three
missense mutations, namely C677T (MTHFR), A1298C (MTHFR), and A66G (MTRR). This study aims to examine the
association between the three missense mutations and PCOS and investigate whether the three missense
mutations exerted their effect on PCOS by affecting the homocysteine level.

Methods: A case-control study was designed, comprising 150 people with PCOS and 300 controls. Logistic
regression analysis was used to assess the association between the three missense mutations and PCOS. Linear
regression analysis was used to assess the association between the three missense mutations and the
homocysteine level. Mediation analysis was used to investigate whether the three missense mutations exerted their
effect on PCOS by affecting the homocysteine level.

Results: Following adjustments and multiple rounds of testing, MTHFR A1298C was found to be significantly
associated with PCOS in a dose-dependent manner (compared to AA, OR = 2.142 for AC & OR = 3.755 for CC; P <
0.001). MTRR A66G was nominally associated with PCOS. Mutations in MTHFR A1298C and MTRR A66G were
significantly associated with the homocysteine level. Mediation analysis suggested the effect of MTHFR A1298C on
PCOS was mediated by homocysteine.

Conclusions: MTHFR A1298C and MTRR A66G were associated with PCOS, and MTHFR A1298C might affect the risk
of PCOS by influencing the homocysteine level.
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Background
Polycystic ovary syndrome (PCOS) is a common endo-
crine and metabolic disease that affects women of child-
bearing age. There is no cure for PCOS and it is prone
to relapse [1–3]. Although the etiology of PCOS is not
yet completely understood, increasing evidence suggests
that it is a multifactorial disease caused by environmen-
tal and genetic factors [4–7]. Environmental factors
include environmental toxins, diet and nutrition, socio-
economic status, and geography, which are believed to
affect the pathogenesis of PCOS [8–10]. Moreover, mu-
tations, polymorphisms, and differential regulation of
genes may contribute to the genetic pathogenesis of
PCOS [11, 12]. While a limited number of studies have
reported relationships between PCOS and several candi-
date genes [13–15], no single gene has yet been identi-
fied as a biomarker.
Several studies have shown that an elevated homocyst-

eine level may be related to the pathogenesis of PCOS
[16–20]. A previous study found that elevated homocyst-
eine levels could modulate M2 macrophage polarization
via estrogen suppression, which promoted insulin resist-
ance and adipose tissue inflammation in PCOS mice
[20]. A multi-center, randomized, controlled trial with
936 participants showed that hyperhomocysteinemia, a
medical condition characterized by an abnormally high
level of homocysteine in the blood, increased the risk of
pregnancy loss and reduced ovulation in people with
PCOS [16].
In humans, the level of homocysteine is mainly affected

by the metabolism of folic acid and methionine [21],
where methylene tetrahydrofolate reductase (MTHFR)
and methionine synthase reductase (MTRR) are the key
enzymes [22–25]. Studies have shown that the activity of
these two enzymes is mainly affected by three missense
mutations, namely C677T (MTHFR), A1298C (MTHFR),
and A66G (MTRR) [23, 26, 27]. The C677T mutation is
the substitution of base C at the 677 site with T, leading
to the substitution of alanine with valine, which results in
a thermolabile variant with reduced activity. The mutation
of MTHFR A1298C is the substitution of base A to C at
the 1298 site, leading to the substitution of glutamic acid
with alanine, which reduces enzyme activity. The MTRR
A66G mutation alters isoleucine into a methionine residue
in the protein chain and subsequently disrupts the me-
thionine/homocysteine cycle.
Therefore, we hypothesize that C677T, A1298C, and

A66G may be risk factors for PCOS, acting through an
increased level of homocysteine. In this case-control
study, we performed a genotype analysis for the three
missense mutations to elucidate if they were risk factors
for PCOS. Furthermore, we examined whether the three
mutations exerted their effect in PCOS by affecting the
homocysteine level.

Materials and methods
Participants
This study recruited 150 premenopausal women with
PCOS from the Department of Gynecology and
Obstetrics, Zhujiang Hospital of the Southern Medical
University (Guangzhou, PR China), between December
2018 and August 2019. All cases had a definitive diagno-
sis of PCOS, as per the Rotterdam diagnostic criteria
[28]. A total of 300 age-matched, healthy, child-bearing
women without PCOS were recruited as the control
group for the same period. All cases and controls had no
history of cancer, diabetes, hypertension, hyperprolacti-
nemia, Cushing’s syndrome, acromegaly, immune system
disorders, a recent history of pregnancy, oral contracep-
tive pill for half a year prior to the study, and no previ-
ous treatment with folic acid.
Written informed consent for the study was provided

by each participant. Ethical approval for the study was
granted by the Institutional Research Ethics Committee
of Zhujiang Hospital of Southern Medical University.

Measures
In this study, two fasting venous blood samples were ex-
tracted from each subject. One was collected in a normal
EP tube for serum measurements, and the other was
collected in an anticoagulant-treated EP tube for DNA
extraction. Both were stored at − 80℃ until use.

Serum measurements
Serum homocysteine levels were quantified using a cyc-
ling enzymatic method on a Mindray BS2000M
automatic biochemical analyzer (Shenzhen Mindray
Bio-Medical Electronics Co., Ltd, Shenzhen, PR China).
The detection limit was determined by analyzing 6 rep-
licates of the zero calibrators and 2 replicates of the
lowest nonzero calibrator. If the concentration of
homocysteine was more than 50 µmol/L, the sample
was manually diluted and retested. The reference range
was 5–15 µmol/L.

DNA extraction and genotyping
The DNA samples were extracted by using Magnetic
Blood Genomic DNA Kit (Tiangen biochemical Tech-
nology co., Beijing, China), and were stored at -20 °C
until use.
Each DNA sample was assessed for MTRR A66G,

MTHFR A1298C, and MTHFR C677T single nucleotide
polymorphisms (SNPs) using the TaqMan-MGB SNPs
Genotyping Assay (Applied Bio-systems Inc., Foster City,
CA, USA). Fluorescence quantitative PCR was per-
formed for TaqMan-MGB. The reagents and primers
used were all from the Human MTHFR and MTRR
Gene Polymorphism Detection Kit (Fluorescence PCR;
SurExam Bio-Tech Co., Ltd, Guangzhou, PR China).
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The PCR amplification conditions were as follows: 95 °C
denaturation for 10 min followed by 20 cycles of amplifi-
cation (92 °C for 15 s and 60 °C for 60 s) and 35 cycles
of amplification (89 °C for 15 s and 60 °C for 90 s). All
assays were replicated twice and the genotype allocation
was determined by an automatic allele calling the quality
value of 0.95.

Statistical analysis
The differences in demographic and clinical characteris-
tics were compared using the Chi-squared test or t-test.
The deviation of genotype distribution was tested for
Hardy–Weinberg equilibrium using the χ2 test. The as-
sociations between MTHFR/MTRR mutations and the
risk of PCOS were assessed using logistic regression ana-
lyses under additive, dominant, and recessive models.
Bonferroni correction was used to adjust for multiple
comparisons. Linear regression was used to assess the
associations between homocysteine and MTHFR/MTRR
gene mutations. We further conducted a causal medi-
ation analysis to test whether the association significance
between MTHFR/MTRR mutations and PCOS was me-
diated via homocysteine level. Significance of the medi-
ation effect was conducted using 5000 bootstrapped
iterations mean indirect and direct effect. The bootstrap-
ping test was performed using the SPSS PROCESS

macro to test the statistical significance of the mediating
effect [29].
For all multivariable models, potential confounders, in-

cluding age, BMI, history of smoking, drinking, and
hypertensive family history were adjusted. A two-tailed
P-value of < 0.05 was considered statistically significant.
The SPSS 19.0 statistical package was used for all data
analyses.

Results
Participant characteristics
Table 1 shows the characteristics of the participants.
The mean age of the PCOS group was 27.02 ± 4.76 years,
which was not significantly different from that of the
control group (p = 0.363). Consistent with previous
meta-analysis [30], the percentage of overweight or obes-
ity in PCOS group is higher than the control group. The
PCOS group subjects had a significantly lower folate
level and higher homocysteine level compared to the
control subjects. For the other characteristics, there was
no significant difference between participants in the two
groups.
For the Hardy–Weinberg equilibrium, no significant

deviation from the expected population genotype pro-
portions was detected at the MTHFR C677T (χ2 = 2.41,
P = 0.12), MTHFR A1298C (χ2 = 3.65, P = 0.06), and
MTRR A66G (χ2 = 3.42, P = 0.06).

Table 1 Demographic and clinical characteristics of the participants

Characteristics Control group
(n = 300)

PCOS group
(n = 150)

P value

Age (years), mean ± SD 27.44 ± 4.21 27.02 ± 4.76 0.363

Height (m), mean ± SD 1.60 ± 0.03 1.60 ± 0.04 0.994

Body mass index (Kg/m2), mean ± SD 20.31 ± 2.03 20.72 ± 3.01 0.131

Overweight or Obesity, n (%) 17 (5.7%) 17 (11.3%) 0.032

Smoking, n (%) 7 (2.3%) 5 (3.3%) 0.756

Drink, n (%) 6 (2.0%) 4 (2.7%) 0.910

Hypertensive family history, n (%) 13 (4.3%) 8 (5.3%) 0.635

Estradiol (pmol/L), median (IQR) 171.00 (135.5–218.75) 141.50 (98.75–206.25) 0.856

Prolactin (ug/L), median (IQR) 15.04 (8.52–20.58) 15.84 (10.99–25.18) 0.385

Testosterone (ug/L), median (IQR) 0.49 (0.42–0.53) 0.54 (0.44–0.68) 0.315

Follicle-stimulating hormone (IU/L, median (IQR) 8.05 (6.45–13.55) 7.05 (5.95–7.93) 0.102

Luteinizing hormone (IU/L), median (IQR) 4.54 (3.75–9.96) 5.67 (4.05–7.66) 0.554

Cholesterol (mmol/L), median (IQR) 4.66 (3.77–5.02) 4.37 (3.87–4.79) 0.157

Triglyceride (mmol/L), median (IQR) 0.84 (0.63–1.41) 0.82 (0.64–1.13) 0.561

Fasting glucose (mg/dl), median (IQR) 4.73 (4.62–5.22) 4.99 (4.81–5.24) 0.116

Fasting insulin (µU/ml), median (IQR) 5.76 (3.71–8.07) 5.24 (3.62–8.19) 0.514

Folate (ng/mL), mean ± SD 11.99 ± 2.58 10.49 ± 3.83 < 0.001

Homocysteine (µmol/L), mean ± SD 8.13 ± 1.21 10.07 ± 2.06 < 0.001

Bold values indicate significance (P < 0.05)
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Association of three missense mutations in MTHFR and
MTRR genes and PCOS risk
Table 2 shows the genetic associations between the three
MTHFR/MTRR mutations and PCOS in both univariable
and multivariable additive, dominant, and recessive
models. The MTHFR A1298C showed a significant asso-
ciation with PCOS under all the three models, and the
association remained significant after adjusting for
potential confounders and Bonferroni correction for
multiple testing was applied (P < 0.016). In the multi-
variable analysis of the additive model for MTHFR
A1298C, a clear dose dependency was observed. Com-
pared to the reference group (AA), those who carried
one risk allele (AC) had 2.142 times higher risk of de-
veloping PCOS, and those who carried two risk alleles
(CC) had 3.755 times higher risk. The MTRR A66G
was nominally associated with PCOS (0.016 < p < 0.05)
under the additive and recessive models, but not the
dominant model. There was no association between
MTHFR C677T and PCOS.
After removing obese women from both studied

groups, we found similar results (data not shown).

Association of three missense mutations in MTHFR and
MTRR genes and serum homocysteine level
Table 3 shows associations between the three MTHFR/
MTRR mutations and the serum homocysteine level for
all participants after adjusting for potential confounders.

Table 2 Genotype distribution of MTHFR, MTRR mutations in the cases and controls according to additive, dominant, and recessive
models

Gene & SNP Model Genotype PCOS Group Control Group OR (95% CI) P
value

Adjusted ORa

(95% CI)
P
valueN (%) N (%)

MTHFR C677T Additive CC 67 (44.7%) 157 (52.3%) 1 0.184 1 0.352

CT 68 (45.3%) 109 (36.3%) 1.462 (0.964–2.217) 1.225 (0.790–1.899)

TT 15 (10.0%) 34 (11.3%) 1.034 (0.528–2.023) 0.753 (0.372–1.524)

Dominant CT + TT 83 (55.3%) 143 (47.7%) 1 0.126 1 0.628

CC 67 (44.7%) 157 (52.3%) 0.735 (0.496–1.090) 0.902 (0.595–1.368)

Recessive TT 15 (10.0%) 34 (11.3%) 1 0.669 1 0.263

CC + CT 135 (90%) 266 (88.7%) 1.150 (0.605–2.186) 1.467 (0.750–2.870)

MTHFRA1298C Additive AA 65 (43.3%) 195 (65.0%) 1 < 0.001 1 < 0.001

AC 63 (42.0%) 91 (30.3%) 2.077 (1.356–3.182) 2.142 (1.376–3.336)

CC 22 (14.7%) 14 (4.7%) 4.714 (2.280–9.748) 3.755 (1.741–8.096)

Dominant AC + CC 85 (56.7%) 105 (35.0%) 1 < 0.001 1 < 0.001

AA 65 (43.3%) 195 (65.0%) 0.412 (0.276–0.615) 0.422 (0.277–0.641)

Recessive CC 22 (14.7%) 14 (4.7%) 1 < 0.001 1 0.008

AA + AC 128 (85.3%) 286 (95.3%) 0.285 (0.141–0.575) 0.368 (0.176–0.771)

MTRR A66G Additive AA 82 (54.7%) 162 (54.0%) 1 0.014 1 0.028

AG 46 (30.7%) 118 (39.3%) 0.770 (0.500–1.186) 0.694 (0.442–1.088)

GG 22 (14.7%) 20 (6.7%) 2.173 (1.122–4.210) 1.796 (0.902–3.572)

Dominant AG + GG 68 (45.3%) 138 (46.0%) 1 0.894 1 0.475

AA 82 (54.7%) 162 (54.0%) 1.027 (0.693–1.523) 1.162 (0.770–1.753)

Recessive GG 22 (14.7%) 20 (6.7%) 1 0.007 1 0.031

AA + AG 128 (85.3%) 280 (93.3%) 0.416 (0.219–0.789) 0.481 (0.247–0.935)

OR odds ratio, CI confidence intervals
a Adjusted for potential confounders, including age, body mass index, folate, history of smoking, drinking, and hypertensive family history
Bold values indicate significance after Bonferroni correction for multiple comparisons (P < 0.016, namely 0.05/3 for three SNPs)

Table 3 Association of the three MTHFR/MTRR mutations and
homocysteine levels

Genotype βa (95% CI) P value

MTHFR C677T CC reference

CT 0.034 (-0.124–0.193) 0.672

TT 0.025 (-0.141–0.192) 0.764

MTHFR A1298C AA reference

AC 0.867 (0.577–1.158) < 0.001

CC 2.092 (1.574–2.611) < 0.001

MTRR A66G AA reference

AG -0.189 (-0.499–0.122) 0.233

GG 0.704 (0.189–1.219) 0.007
a Adjusted for potential confounders, including age, body mass index, folate,
history of smoking, drinking, and hypertensive family history
Bold values indicate significance (P < 0.05)
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Mutations in MTHFR A1298C and MTRR A66G were
significantly associated with the serum homocysteine
level. Participants having more risk alleles had a signifi-
cant positive association with higher serum homocyst-
eine levels than those with less. For example, compared
to people who had no risk allele (AA), those who had
one risk allele (AC) in MTHFR A1298C was
0.867 µmol/L higher in the homocysteine level, and two
risk alleles (CC) was 2.092 µmol/L higher.

Mediation analysis
Table 4 shows whether the associations between three
MTHFR/MTRR mutations and PCOS were mediated via
homocysteine levels. The casual mediation analysis indi-
cated that the effect of MTHFR A1298C on PCOS was
mediated via the homocysteine level (indirect effect =
0.772 for AC; 1.861 for CC; p < 0.05 for both). For
MTRR A66G, only the effect of the phenotype GG on
PCOS was mediated via the homocysteine level (indirect
effect = 0.623; p < 0.05). For both the MTHFR A1298C
and MTRR A66G, no significant direct effect was ob-
served. There was no direct or indirect association be-
tween MTHFR C677T and homocysteine level on PCOS.

Discussion
Studies showed that an elevated homocysteine level may
be related to the pathogenesis of PCOS. In this case-
control study, we found that two mutations in
homocysteine-related genes, namely MTHFR A1298C
and MTRR A66G, were associated with the risk of
PCOS, and the associations were mediated through in-
fluencing the level of homocysteine.
In our study, MTHFR A1298C was highly associated

with PCOS after adjusting for potential confounders.

Compared to the wild-type genotype AA, mutant homo-
zygote genotype AC had a 2.142 times higher risk of
PCOS, and CC had 3.755 times higher risk of PCOS,
which showed that the effect size was stronger for each
additional risk allele C. In agreement with our study, a
recent meta-analysis demonstrated that MTHFR
A1298C was associated with PCOS susceptibility [31].
For MTRR A66G, our results suggest an association with
PCOS, but no significant association was found after
multiple tests. A case-control study with 203 Brazilian
participants showed that the polymorphic homozygous
mutation of MTRR A66G was associated with protective
factors for PCOS [32]. For the MTHFR C677T, we did
not observe an association with PCOS; conflicting results
have been reported, ranging from no observed associ-
ation Poland [33] to the T allele being a risk factor for
PCOS in the Korean population [34]. Such different con-
clusions of studies may be due to genetic mutations,
race, region, and other factors, or due to differences in
sample size.
Importantly, we also found that the association be-

tween MTHFR A1298C and PCOS was mediated by the
serum homocysteine level. Mediation analysis examines
what proportion of the SNP-PCOS association travels
through homocysteine and acknowledges the fraction of
the association that is independent of homocysteine.
The result of the mediation analysis showed that the ef-
fect of A1298C on PCOS was through homocysteine. To
our knowledge, this is the first study examining the po-
tential mechanism underlying the association between
genetic factors and the risk of PCOS. In addition, there
is a biologically expected direction for the effect of
A1298C on homocysteine and PCOS, in that A1298C
with more risk alleles increased homocysteine levels and
the risk of PCOS, which supports the mediation analysis
results.

Table 4 Mediation analysis of associations between three MTHFR/MTRR mutations and PCOS risk (mediated by homocysteine)

Relative indirect effect
(95% CI)

Relative direct effect
(95% CI)

Total effect
(95% CI)

MTHFR C677T CC reference reference -0.003 [-0.004 - (-0.002)]

CT 0.062 (-0.240–0.354) 0.167 (-0.337–0.670)

TT 0.069 (-0.492–0.706) -0.431 (-1.260–0.399)

MTHFR A1298C AA reference reference 0.102 (0.052–0.168)

AC 0.772 (0.464–1.132) 0.155 (-0.353–0.663)

CC 1.861 (1.085–2.777) -0.054 (-1.092–0.985)

MTRR A66G AA reference reference 0.014 (-0.001–0.036)

AG -0.169 (-0.473–0.115) -0.344 (-0.855–0.166)

GG 0.630 (0.149–1.211) 0.135 (-0.693–0.963)

All estimates obtained was adjusted for potential confounders, including age, body mass index, folate, history of smoking, drinking, and hypertensive family
history, and used causal mediation analysis with SPSS’s Process command
Relative Direct effects: independent effects of three missense mutations on PCOS risk. Relative Indirect effects: effects of three missense mutations on PCOS risk
(mediated by homocysteine)
Bold values indicate significance (P < 0.05)
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Homocysteine is a protein that is synthesized in the
body and, ideally, is in low concentrations in the blood
[35]. Elevated homocysteine is a risk factor for many
diseases, including PCOS and cardiovascular disease
[36–41]. Therefore, our finding of the association be-
tween the homocysteine-related mutations and PCOS
supports previous studies. However, to confirm the caus-
ality of the homocysteine levels and PCOS, a mendelian
randomization study is needed. As the mutations of
A1298C affect the function of MTHFR, drugs that treat
MTHFR may reduce the risk of PCOS. Furthermore, as
people with PCOS have a higher risk of cardiovascular
disease, there may be an assumption that PCOS patients
with a MTHFR A1298C AC/CC genotype may be prone
to cardiovascular disease [42]. A key strength of this
study is that we used mediation analysis to explain the
biological rationality of the association between the risk
mutations and PCOS. Furthermore, potential con-
founders were taken into account in the regression
analyses.
However, several study limitations exist. Similar to

other case-control studies, our study has limited verifica-
tion of causality, but with the observations of other epi-
demiological supports from the Bradford-Hill Criteria
[43], such as the temporal relation between the genes
and PCOS outcome, the strong magnitude of effect,
clear allele dose dependency, and biological plausibility,
our findings increased the possibility of causality. Al-
though the percentage of overweight or obesity in PCOS
group is significantly higher than the control group
(11.3% vs. 5.7%), there might be some inclusion bias
since the pooled estimated prevalence of overweight and
obesity in people with PCOS was 61% [30]. Another
limitation is that we used convenience samples to
examine the relationship between the risk alleles and
homocysteine level, which prevented control of the rep-
resentativeness of the samples. This lack of control may
cause biased samples and research results, and thus limit
the wider application of the study. In addition, as the as-
sociation between the three mutations with PCOS may
be ethnic-specific and the interactions between genes
and the environment may also modulate PCOS risk, the
findings of the present study need to be verified in dif-
ferent populations and other larger cohort studies.
In conclusion, MTHFR A1298C and MTRR A66G

were associated with PCOS, and MTHFR A1298C might
affect the risk of PCOS by influencing the homocysteine
level. Drugs that treat MTHFR may reduce the risk of
PCOS for people with the MTHFR A1298C AC/CC
genotype.
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