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Abstract

Caloric restriction (CR), an energy-restricted intervention with undernutrition instead of malnutrition, is widely
known to prolong lifespan and protect against the age-related deteriorations. Recently it is found that CR
significantly affects female reproduction via hypothalamic (corticotropin releasing hormone, neuropeptide Y, agouti-
related peptide) and peripheral (leptin, ghrelin, insulin, insulin-like growth factor) mediators, which can regulate the
energy homeostasis. Although CR reduces the fertility in female mammals, it exerts positive effects like preserving
reproductive capacity. In this review, we aim to discuss the comprehensive effects of CR on the central
hypothalamus-pituitary-gonad axis and peripheral ovary and uterus. In addition, we emphasize the influence of CR
during pregnancy and highlight the relationship between CR and reproductive-associated diseases. Fully
understanding and analyzing the effects of CR on the female reproduction could provide better strategies for the
management and prevention of female reproductive dysfunctions.
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Introduction
Caloric restriction (CR) is a dietary intervention that
restricts the energy intake and induces undernutrition
without malnutrition [1]. CR is also termed energy
restriction/deficiency, food restriction, dietary restriction
and negative energy balance [1, 2]. In the 1930s, McCay
et al. [3] first discovered that CR increased the lifespan
of rats who were restricted in food intake at the weaning
or 2 weeks after the weaning. To date, CR is generally
considered to prolong the mean as well as maximum
lifespan and delay age-related deleterious alternations in
diverse species, from yeast to mammals [1, 4].
Recently a hypothesized explanation of CR longevity-

extending effect, which is based on the disposable soma
theory of aging, is that energy resource is reallocated

from reproduction to somatic maintenance [5, 6]. Indeed,
CR inhibits reproductive functions for long life in both
sexes of invertebrates and vertebrates, and this effect is
significantly stronger in laboratory model species. It is
demonstrated that the reproductive traits with more
energy expenditure suffer higher reductions. In most
experiments, females are exposed more reproductive costs
than males under CR, so females suffer a larger and more
significant elongation in lifespan than males [6].
It is well-known that CR impairs female reproduction,

but CR can also benefit it. Selesniemi et al. [7] reported
that adult-onset CR enables to maintain activities of
reproductive axis in aged female mice. Nowadays, more
and more obese even normal-weight women go on a diet
to achieve a beautiful figure. Therefore, it is necessary to
have a systematic understanding that whether CR in-
duced by dieting is favorable or harmful on female
reproduction. In this review, we discuss the effects of CR
in hypothalamus-pituitary-ovarian (HPO) axis, ovary and
uterus. In addition, we investigate the influence of CR
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during pregnancy and highlight the potential role of CR
in female reproductive-associated diseases.

The roles of CR in HPO axis
Coordination of HPO axis with mediators controlling
energy homeostasis
In all examined mammals, two main hypothalamic
populations of kisspeptin (kiss1) neurons localize in
caudal arcuate nucleus (ARC) and rostral preoptic area
(POA). ARC kisspeptin neuron (Kiss1ARC) is also re-
ferred as KNDy neuron because it co-expresses the posi-
tive autoregulator neurokinin B (NKB) and the negative
autoregulator dynorphin (DYN). Kisspeptin neurons in
both ARC and POA positively innervate GnRH neurons
via kiss1 receptor (kiss1r). As following studies are pre-
dominantly based on laboratory rodents, we just discuss
the differences of kisspeptin neurons between rodents
and humans. One difference is that the rostral population
in rodents is collectively located in the rostral periven-
tricular area of the third ventricle (RP3V), which consists
of the anteroventral periventricular nucleus (AVPV) and
the periventricular nucleus (PeN). The POA kisspeptin
neurons in humans reside more dispersedly. The other
one is that in rodents, Kiss1ARC is implicated in negative
feedback of estrogen while AVPV kisspeptin neuron
(Kiss1AVPV) is implicated in positive feedback. In contrast,
both negative and positive feedback are mediated by Kis-
s1ARC in humans [8, 9]. Both hypothalamic (CRH neurons,
ARC NPY/AgRP neurons, ARC POMC/CART neurons)

and peripheral (leptin, insulin, ghrelin, IGF-1) mediators
are response to energy balance, and their relationships
with HPO axis are shown in Figs. 1 and 2 respectively.
Noticeably, kisspeptin neurons are the critical hubs of
these linkages.

Hypothalamic mediators
Figure 1a indicates that some metabotropic neurons in
hypothalamus enable to regulate HPO axis. Corticotropin
releasing hormone (CRH) neurons in hypothalamus of
adult female rats directly inhibit Kiss1ARC and Kiss1AVPV

through CRH receptors [10]. The orexigenic neuropeptide
Y (NPY)/agouti-related peptide (AgRP) neurons in ARC
are negative to HPO axis. Padilla et al. [11] discovered that
AgRP neurons in mice give inhibitory innervation to
Kiss1ARC and Kiss1AVPV, but they do not give any neuro-
transmitter or neuropeptide to GnRH neurons. Although
GnRH neurons in female rodents express both stimulatory
NPY Y4 receptors and inhibitory Y1 receptors, the latter
is responsible for the major effect of NPY peptide on
GnRH neurons [12, 13]. GnRH neurons in adult rats also
express inhibitory NPY Y5 receptors [14]. The anorexigenic
pro-opiomelanocortin (POMC)/cocaine- and amphetamine-
regulated transcript (CART) neurons in ARC are positive to
HPO axis. In female mice, the excitatory effect of POMC
neurons to GnRH neurons is predominantly mediated by
the POMC-cleaved product α-melanocyte stimulating
hormone (α-MSH), which excites GnRH neurons via both
melanocortin receptor 3 (MC3R) and MC4R [12]. However,

Fig. 1 The possible interaction between HPO axis and hypothalamic neurons controlling energy homeostasis in rodents. Schematic representation of
possible interaction between HPO axis (blue circles and rectangles) and hypothalamic neurons (yellow circles) controlling energy homeostasis in
normal energy status and CR. a In normal energy status, the CRH neurons and orexigenic NPY/AgRP neurons inhibit HPO axis while anorexigenic
POMC/CART neurons activate HPO axis. b CR finally suppresses HPO axis by activating NPY/AgRP and inhibiting POMC/CART neurons. During the CR,
low serum glucose and fatty acid, high serum ketone body and fasting signals from upper digestive tract activate A2 noradrenergic neurons in NTS.
Therefore, the adrenergic input from NTS stimulates CRH neurons and thus inhibits Kiss1ARC. Solid arrow indicates the promotion. Dotted arrow
indicates the inhibition. The green arrow indicates upregulation while the red arrow indicates downregulation under CR
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α-MSH inhibits CRH neurons via MC4R [15]. The experi-
ment in female mice found that AgRP peptide, which is an
antagonist of melanocortin receptors, attenuates the MC4R-
mediated activation on GnRH neurons [16]. Interestingly,
POMC neurons in female mice negatively innervate NPY/
AgRP neurons and this innervation is enhanced by estradiol
(E2) [17]. It has been discovered that CART postsynaptically
depolarize Kiss1ARC and GnRH neurons in female rats [18].
Collectively, in normal energy status, CRH neurons and
ARC NPY/AgRP neurons inhibit HPO axis while ARC
POMC/CART neurons activate HPO axis.

Leptin
Leptin is an adipocyte-derived anorexigenic factor. The
stimulatory effect of leptin on HPO axis is dominant at
hypothalamic level. Leptin directly activates Kiss1ARC in
mice, sheep and guinea pigs. It is summarized that leptin
deficiency in mice decreases not only ARC kiss1 mRNA
level but also the amounts of Kiss1AVPV [19]. Although
GnRH neurons do not express leptin receptors (LepRs)
[19–21], leptin in rodents can indirectly stimulate them

through the neurons in hypothalamic premammillary
nucleus (PMV) [22]. Generally, ARC POMC/CART neu-
rons express facilitatory LepR while ARC NPY/AgRP
neurons express inhibitory LepR [15]. Indeed, leptin can
exert female-specific stimulatory effect on GnRH neurons
via CART in adult rats [14]. However, strong evidences
from laboratory rodents indicate that NPY-Y1/Y5 receptor
signaling [2, 14] and MC3R/MC4R-mediated signaling
[21] are leptin-independent.

Ghrelin
Ghrelin is the only circulating stomach-derived peptide
and it functionally antagonizes leptin [23]. Ghrelin pre-
dominantly inhibits HPO axis [23–25] through following
3 approaches: (i) Ghrelin directly inhibits Kiss1AVPV [24]
and GnRH neurons [25] in female rats. (ii) Ghrelin
promotes the release of CRH in female rhesus monkeys,
so it can indirectly repress GnRH neurons [23, 26]. (iii)
Ghrelin stimulates NPY neurons and subsequently in-
hibits POMC neurons in rodents [27]. Although ghrelin
primarily suppresses gonadotropin secretion in female
animals and women [28], it benefits basal luteinizing
hormone (LH) and follicle-stimulating hormone (FSH)
secretion in female rats [25]. Ghrelin in mouse placenta
negatively modulates early embryonic development [23].

Insulin
The anorexigenic insulin is found to activate HPO axis.
Although in vitro mice study discovered that insulin can
directly modulate GnRH neurons, in vivo studies of adult
ewes and mice gave an opposite evidence [29, 30]. Indeed,
insulin activates Kiss1ARC in mice via functional insulin
receptors [31]. Also, in laboratory animals, insulin excites
ARC POMC neurons and suppresses NPY/AgRP neurons
[30]. In addition, insulin in mice directly stimulates gona-
dotropes to enhance the LH mRNA expression [32].

IGF-1
The hepatic insulin-like growth factor-1 (IGF-1) enables
to activate HPO axis. Firstly, both intracerebroventricular-
infused and peripherally injected IGF-1 in the prepubertal
female rodents can directly activates Kiss1AVPV and GnRH
neurons, thus leading to a precocious puberty [29].
Secondly, experiment in female rats demonstrated that
low circulating IGF-1 caused by CR inhibits the pituit-
ary gonadotropes, therefore represses the secretion of
LH, FSH and thus estrogen [33]. Thirdly, IGF-1 signaling in
ovine induces the activation of primordial follicles [34]. In
addition, IGF-1 in mammalian ovary stimulates steroidogen-
esis, either alone or in synergy with gonadotropins [35].

CR-induced alternations negatively affect HPO axis
It is found that negative energy balance in female mam-
mals inhibit HPO axis by suppressing pulsatile GnRH

Fig. 2 The interaction between peripheral hormones and HPO axis.
The anorexigenic factors such as leptin, insulin, estradiol (E2) and
insulin-like growth factor (IGF-1) activate HPO axis while the
orexigenic ghrelin inhibits HPO axis. CR downregulates the
expressions of leptin, insulin, E2 and IGF-1, which will lead to the
inhibition of HPO axis. Ghrelin expression is upregulated during
fasting but it is downregulated during chronic CR. Solid arrow
indicates the promotion. Dotted arrow indicates the inhibition
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secretion and then attenuating pulsatile LH release from
pituitary, resulting in infertility [2, 20, 36]. Noticeably,
the experiments in adult female rodents discovered that
the extent of this inhibition is different between acute
fasting and chronic CR. The former marginally inhibits
HPO axis because it hardly changes KNDy-related gene
expression, but it suppresses Kiss1r expression on GnRH
neurons. The latter totally inhibit HPO axis because it
not only decreases ARC kiss1, NKB, AVPV kiss1 and
kiss1r expression but also increases DYN expression [20,
36]. Under CR, the diverse changes in both central and
peripheral regulators contribute to HPO axis inhibition.
Figure 1b demonstrates that alternations in hypothal-

amic mediators inhibit HPO axis under CR. Initially, a
series of rodent experiments discovered that CR acti-
vates AgRP neurons [11] and increases NPY mRNA level
[37]. Also, CR decreases the expression of POMC [2]
and CART [18]. Therefore, the activation of ARC NPY/
AgRP neurons and the suppression of ARC POMC/
CART neurons enable to inhibit HPO axis. Secondly,
studies in laboratory animals (mainly rodents) found that
there are two avenues that finally activate CRH neurons.
One is that ependymocytes in the fourth ventricle (4 V)
sense CR-induced high ketone-body availability and low
glucose as well as fatty acid availabilities. Then these
ependymocytes send the energy-deficient information to
A2 noradrenergic neurons in solitary tract nucleus
(NTS) [38, 39]. The other pathway is that fasting signals
from upper digestive tract stimulate NTS A2 noradren-
ergic neurons via vague nerve [39]. Converging these
two pathways, CRH neurons that are received the stimu-
latory input from A2 noradrenergic neurons [38, 39] re-
lease high level of CRH and thus inhibits Kiss1ARC [40].
Interestingly, Deura et al. [40] discovered that in female
rats, the CR sensor ependymocytes may also stimulate
A6 noradrenergic neurons in NTS and then activate
CRH neurons. These CRH neurons inhibit Kiss1AVPV.
Fig. 2 demonstrates that alternations of peripheral hor-

mones inhibits HPO axis under CR. In mammals (mainly
rodents), CR decreases serum leptin [15], insulin [2, 41]
and insulin-like growth factor-1 (IGF-1) [2, 33, 41]. This
series of hormonal changes enable to repress pulsatile LH
secretion, therefore contributing to the inhibitory effect of
CR on HPO axis [2, 15, 20, 33]. However, a strong evi-
dence from adult female rats shows that hypoleptinaemia
is not the crucial signal leading to the inhibition of ARC
kiss1 and LH during CR [20]. Although serum ghrelin is
decreased during fasting, it is increased in chronic CR [2].
In ovariectomized estrogen-replaced rats, fasting-induced
hyperghrelinaemia suppresses pulsatile LH secretion [24].
In addition, CR decreases plasma E2 in rodents and rumi-
nants [2, 42–45], which is consistent with HPO axis inhib-
ition. Interestingly, CR enhances the negative feedback
(mice) [2, 36] and attenuates the positive feedback (rhesus

monkeys) [46] of E2 on HPO axis. It is also found that E2
as an anorexigenic factor enables to inhibit ARC NPY/
AgRP neurons and activate ARC POMC neurons [31].
Therefore, low E2 level caused by CR also contributes to
the inhibition of HPO axis. Intriguingly, chronic CR in
adult female rodents reduces serum LH in the presence of
estrogen [36, 42] but increases serum LH in the absence
of estrogen [36, 47], suggesting that the existence of estro-
gen is necessary in the effect of CR on HPO axis.

CR delays the onset of female puberty
Puberty is started by re-awaking the GnRH pulse gener-
ator that is dormant before [29, 48]. Recent experiments
have discovered that pubertal timing in female mammals
is delayed by CR [30, 48], and it is restored once ad
libitum (AL)-feeding was resumed [21]. It is generally
accepted that hypothalamic kiss1 is a gatekeeper of
puberty [19, 49]. Therefore, reduced hypothalamic kiss1
expression during prepubertal period may be the key
mechanism of CR deferring puberty onset.
The changes in brain under CR delay the timing of

puberty. The experiment in immature female rodents
found that hypothalamic AMP-activated protein kinase
(AMPK)-kisspeptin signaling regulates puberty onset.
Hypothalamic AMPK, which can sense whole-body en-
ergy status, is found to be activated (i.e. phosphorylated)
by CR and thus postpone the onset of puberty. More
specifically, CR increases pAMPK level in Kiss1ARC and
thus suppresses ARC kiss1 gene expression. However,
the effect of hypothalamic pAMPK on Kiss1AVPV is not
discovered [50]. In addition, the experiment in female
rats discovered that CR defers pubertal maturation by
attenuating NKB-neurokinin-3 receptor (NK3R) signal-
ing [51] as NKB is a positive autoregulator of Kiss1ARC.
Studies in rodents and humans demonstrated that

leptin is just a permissive factor of pubertal onset be-
cause it alone cannot advance the onset of puberty [19].
It has been discovered that the suppression of leptin/
LepR-kisspeptin/Kiss1r-GnRH signaling in female rats
mediates the inhibitory effect of CR on puberty onset
[48]. The novel leptin-α-MSH-kisspeptin -GnRH path-
way in rats and mice is a possible mechanism of pubertal
delay caused by CR [52]. High serum ghrelin can also
delay puberty onset, but female rats are less sensitive to
the effect of ghrelin than males [23]. It is discovered that
the production of hypothalamic pAMPK is repressed by
anorexigenic signals (e.g. leptin, insulin and E2) while is
induced by orexigenic signals (e.g. ghrelin) [53], so it may
be a considerable method for CR to defer pubertal timing.

The roles of CR in ovary
The roles of CR in folliculogenesis
Originally, studies of female rodents with CR initiated at
weaning have proved that CR extended reproductive

Sun et al. Reproductive Biology and Endocrinology            (2021) 19:1 Page 4 of 11



lifespan. However, CR during ablactation also impeded
adolescent growth and sexual maturation, which interfered
experiments [54]. Fortunately, recent studies of female ro-
dents with adult-onset CR effectively excluded these inter-
ference factors. These experiments discovered that CR
delays ovary aging through the maintenance of ovarian
oocyte-containing follicle reserve [7, 42, 55–59] and good
egg quality [7, 60, 61]. Although CR reduces fertility, it re-
tains reproductive capacity and prolongs the reproductive
lifespan. Therefore, when CR rodents are returned to AL
feeding, their reproductive performances (i.e. fertility,
fecundity and postnatal offspring survival rate) rebound or
are even higher than that in AL condition [7].

CR benefits follicle pool reservation
The maintenance of follicle pool can reduce fertility and
prevent premature ovarian failure [7, 57]. Compared
with AL control group, CR in adult female rodents
significantly increased the number of primordial follicles
(PMFs). This finding indicates that CR reduces the rate
of PMF activation, thus inhibiting the transition from
primordial follicle to primary follicle [7, 42, 55–59]. Sec-
ondly, the number of secondary follicles, antral follicles
and corpus luteum were dramatically lower in CR-fed
rodents. This observation suggests that CR suppresses
the ovarian follicle development at different stages,
follicle maturation and ovulation [39, 51, 53, 54]. CR in-
hibits follicle atresia because CR-fed mice and rats had
the significantly low amount of atretic follicles [7, 42, 56,
57]. Also, CR inhibits the total follicle loss as the dra-
matically increased number of total surviving follicles
was seen in CR-fed rodents [57–59]. Although low fertility
is observed in CR-fed mice, the capacity of fertility is aug-
mented. Therefore, the fertility rebounds once AL-feeding
is resumed [7]. It is noticed that CR also can augment the
follicle pool and elongate the ovarian lifespan in adult
female rats treated with chemotherapy [4]. SIRT1720,
which partially mimics CR, achieves the similar effect in
high-fat diet-induced obesity [58].
Figure 3a shows the mechanism that CR increases

ovarian follicle pool. Initially it is found that CR en-
hances SIRT1, FOXO3a, NRF1 and SIRT6 gene expres-
sion in rodent ovary. More specifically, SIRT1, FOXO3a
and SIRT6 are predominantly expressed in the oocytes
and hardly expressed in the granulosa cells. Due to
SIRT1-FOXO3a-NRF1 complex formed on the SIRT6
promoter can upregulate SIRT6 expression, activation of
SIRT1/FOXO3a/NRF1-SIRT6 signaling is one of the
avenues which CR hinders the transition from PMFs to
primary follicles [57–59, 62, 63]. SIRT1 upregulation by
CR is important because it can also downregulate both
p53 [53, 54] and mTOR complex 1 (mTORC1) [42, 58,
63] gene expression in rodent ovary. The evidence that
low p53 inhibits follicle atresia is support by following

studies: (i) p53 protein in rats is expressed in the apop-
totic granulosa cells of atretic follicles [64]. (ii) Reduced
p53 level in rat ovary is related to a significant decrease
in the amount of apoptotic granulosa cells as well as
atretic follicles [65]. (iii) p53 in mice is implicated in the
regulation and selection of oocytes at checkpoints, such
that oocytes that would otherwise be lost may persist
when p53 is absent or reduced [66]. Recent studies from
rodent models discovered that SIRT1 suppresses
mTORC1-p70S6 kinase (S6K1)-ribosomal protein S6
(rpS6) signaling, thus preserving PMFs in quiescent state
[42, 58, 63]. The most critical intra-oocyte signaling that
controls PMF activation is the PI3K-Akt signaling. CR in
female mice inhibits PI3K-Akt signaling and subse-
quently represses FOXO3a phosphorylation. The non-
phosphorylated FOXO3a proteins are remained in oocyte
nucleus, culminating in sustaining quiescent PMFs and
thus maintaining ovarian follicle pool [55, 67]. Interest-
ingly, it is found that CR preserving PMF pool is associ-
ated with low IGF-1 in rat ovary [33], and IGF-1 indeed
activates PMFs via PI3K-Akt pathway in sheep ovary [34].
Therefore, CR may preserve PMF pool of rats by inhibit-
ing IGF-1-PI3K-Akt signaling. It is also summarized that
this signaling can upregulate mTORC1 expression [68]. In
addition, CR overexpressing IGF-1 receptors (IGF-1Rs)
may mediate the inhibition of follicle atresia because IGF-
1Rs enable to antagonize cell apoptosis [33].

CR benefits egg quality
Two experiments in adult female mice give compelling
evidence that CR enables to overcome the aging-related
deterioration of egg quality: (i) The fecundity and postnatal
offspring survival rate were remarkably increased in CR-
then-AL fed mice [7]. (ii) The aging-related increases in an-
euploidy, chromosomal misalignment on the metaphase
plate, meiotic spindle abnormalities, mitochondrial aggrega-
tion and decreased ATP level, which were occurred in
oocyte of AL-fed mice, were not exhibited in age-matched
CR mice [61]. Therefore, good egg quality maintained by
CR has a beneficial effect on oocyte meiotic maturation and
fertilization, pre-implantation embryonic development,
pregnancy success rate and embryo quality [60, 61].
The mechanism of CR keeping good egg quality is also

shown in Fig. 3b. CR in adult mice upregulates mito-
chondrial SIRT3 in oocyte, and SIRT3 protect oocytes
from the synthesis of mitochondrial reactive oxygen spe-
cies (ROS). Therefore, high SIRT3 attenuates oxidative
stress which declines oocyte quality with age [61, 62].
Also, CR in adult mice dramatically improves meiotic
spindle assembly and maintenance, so it prevents oocyte
aneuploid and chromosomal misalignment. In addition,
CR enables to prevent the occurrence of aging-related
mitochondrial dysfunction because it can appropriately
arrange mitochondria in oocytes [61]. Although CR
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upregulates PGC-1α expression [60], Selesniemi et al.
[61] discovered that loss of PGC-1α can reproduce the
positive effect of CR on egg quality in aging female mice.
It is generally known that rodent models do not have

true menses like humans. In humans, high size of PMF
pool and slow rate of oocyte depletion are essential
determinants of delayed menopause onset [69, 70]. As
CR increases the number of PMFs and suppresses
follicle development of rodents, it may have similar
effect on human follicles. Therefore, CR seems to delay
menopause onset and prolong reproductive lifespan of
humans. However, the study of women who were ex-
posed to Dutch famine discovered that CR decreases age
at natural menopause, especially when occurring in early
life [71]. The reason of this phenomenon is unknown.
Another experiment showed an enigmatic discovery that
the improvement of fecundity was observed in rabbits
with CR alone [72]. Therefore, further studies are
needed to explain these confusing findings.

The roles of CR in ovulation
CR delays ovulation in mice [57], rhesus monkey [46],
buffalo heifer [45] and women [73]. However, ovulation
is increased in CR-then-AL-fed mice [7, 43]. There are
two possible mechanisms of CR inhibiting ovulation.

One is that in women CR reduces FSH secretion below
the basal level. FSH deficiency cannot stimulate the
growth of secondary follicles and thus the generation of
dominant follicles where E2 is synthesized. Therefore, E2
concentration is too low to trigger an LH surge [74, 75].
In addition, low intra-ovarian IGF-1 caused by CR im-
pedes E2 synthesis, thus inhibiting LH surge generation
[35, 75, 76]. The other one found by Lujan et al. [46] is
that CR inhibits gonadotropin surges in ovariectomized
rhesus monkeys supplied with exogenous E2 and pro-
gesterone (P4), and the researchers summarized that
CR inhibits gonadotropin surges in most CR-treated
animals because CR impairs the hypothalamic response
to the positive feedback of E2.

The roles of CR in steroidogenesis
It has been discovered that CR reduces plasma E2. The dis-
covery that chronic CR increase the expression of estrogen
receptors but do not change the expression of androgen re-
ceptors in mice ovary also indicates the decreased level of
serum E2 under CR [43]. Here we hypothesize that CR in-
hibits E2 synthesis. One possible mechanism is provided by
the experiment in beef heifers [44]. Heifers with CR had
lower plasma insulin, IGF-1 and LH, therefore STAR gene
expression in theca cells is decreased. STAR transports
cholesterol from the outer to the inner mitochondrial

Fig. 3 The potential mechanism of CR delaying ovary aging in female rodents. This mechanism is divided into two avenues. a One is CR
preserving ovarian follicle pool, which is mediated by the SIRT1 activation and IGF-1 inhibition, which still need to be elucidated. b The other one
is CR increasing egg quality, which is achieved by activating SIRT3 and inhibiting the occurrence of meiotic spindle and mitochondria disorder.
Solid arrow indicates the promotion. Dotted arrow indicates the inhibition
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membrane, and then the intra-mitochondrial cholesterol
can be converted into pregnenolone, resulting in E2 synthe-
sis. As a result, CR-treated beef heifers reduced E2 produc-
tion in dominant follicle. Another possible mechanism is
related to intra-ovarian IGF-1/IGF-1R signaling. IGF-1
alone can increase the synthesis of E2, and it can synergis-
tically activate FSH-induced aromatase that catalyzes the
synthesis of E2 in rodents and humans [35, 75], so CR sup-
presses E2 synthesis. In addition, CR females have lower
number of antral follicle where E2 is mainly synthesized.
It is less well-known about the effect of CR on P4 syn-

thesis. CR reduces serum P4 in mice [56], buffalo heifer
[45] and women [73]. However, it is found that there
was no difference of follicular fluid P4 between beef
heifers fed a diet of 1.2 times maintenance (M) and that
fed a 0.4M diet [44]. It is hypothesized that CR inhibits
P4 production because CR females have less corpus
luteum where most P4 is synthesized. In addition, low
IGF-1 level may decrease P4 synthesis because IGF-1
alone or synergistically promotes P4 production [35].

The roles of CR in the uterus
There are few experiments concentrating on the effect
of CR on uterus. Basically, we can make sure that the
reductions of serum E2 and P4 caused by CR impair
endometrium development and function. The reason is
that before ovulation E2 stimulates the rapid prolifera-
tion of endometrial stromal and epithelial cells. Also, E2
promotes the growth and vascularization of uterine
glands. After ovulation, P4 produces a highly secretory
endometrium and decidualizes the stromal cells to pre-
pare an appropriate environment for implantation [74].
It is found that when women are exposed to CR during
puberty, the mature GnRH neurons will become imma-
ture, increasing the risk of menstrual impairment [77].

The study in women proved that CR during reproduct-
ive age is related to irregular menses, and this deterior-
ation becomes more serious if CR happens earlier. It is
also discovered that CR during childhood prolongs the
time from menarche to regular menses. However, CR
during childhood seems not to negatively affect men-
strual cycles in adulthood [78] (Table 1).

The roles of CR in pregnancy
Placenta is a critical hub in the effect of CR on offspring’s
health
CR during pregnancy leads to maternal undernutrition
(MUN). In mammals, MUN results in intrauterine
growth restriction (IUGR) through reducing fetal nutri-
ent availability, altering hormonal environment exposed
to fetus and causing epigenetic changes in fetal genomes.
These changes not only damage fetal health, but also in-
crease the chronic disease susceptibility in postnatal life.
Noticeably, placental alternation is a pivotal linkage of
MUN to IUGR [87, 88].
Placenta is plastic to against exogenous insults. In

women exposed to Dutch Famine during pregnancy,
compensatory growth of placenta induced by MUN
maintains consistent fetal nutrition to parturition, so the
birthweight is normal [79] (Table 1). However, IUGR
results if this adaptation alone cannot provide enough
nutrients to ensure the normal fetal growth. In fact, im-
paired maternal-fetal circulation and nutrient transport
system in placenta also mediate the influence of MUN
on fetal development [87].
A series studies of humans who were exposed to

Dutch Famine before birth discovered that MUN gives
postnatal progeny the physical and cognitive impair-
ments in life-long pattern. For example, MUN increases
the prevalence of schizophrenia, coronary heart disease

Table 1 The main roles of CR in uterus, pregnancy and reproductive-related diseases

Authors Year Species Aspects Influence of CR

Elias et al. [78] 2007 Humans Uterus CR during puberty relates to irregular menses, and CR during
childhood prolongs the time from menarche to regular menses.

Lumey et al. [79] 1998 Humans Pregnancy CR in early pregnancy triggers compensatory growth of placenta.

Roseboom et al. [80] 2006 Humans Pregnancy Prenatal CR gives lasting negative consequences to offspring’s
health, especially in early gestation.

Harper et al. [81] 2015 Mice Pregnancy CR during early gestation makes placental alternations reversible,
resulting in metabolically normal offspring.

Harrath et al. [82] 2017 Rats Pregnancy Female offspring exposed to prenatal CR have an early puberty
onset and a short reproductive lifespan.

Yarde et al. [83] 2013 Humans Pregnancy No relationship between prenatal CR and reproductive activities
of offspring.

Fenichel et al. [84] 2007 Humans Reproductive-related diseases CR develops hypothalamic amenorrhea.

Marzouk et al. [85] 2015 Humans Reproductive-related diseases CR alleviates the deleterious conditions of PCOS patients with
obesity.

Lope et al. [86] 2019 Humans Reproductive-related diseases CR reduces the incidence of breast cancer

Notes: CR caloric restriction, PCOS polycystic ovary syndrome
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and type 2 diabetes. This deleterious effect is most obvious
in early gestation, elucidating that early pregnancy is the
most pivotal and vulnerable period [80, 89] (Table 1). The
reason is that MUN in early pregnancy can permanently
alter placenta, so it proceeds to affect the fetus till partur-
ition, culminating in impairing postnatal health [81, 88].
In contrast, the observation in mice treated with 50% CR
from days1.5–11.5 of pregnancy discovered that mice with
CR could have reversible placental changes during early
pregnancy, and their adult offspring was metabolically
normal. It has been proposed that fetal development of
humans expends more time than mice, so the timescale in
humans is long enough to convert reversible compensa-
tion into irreversible overcompensation. This fact may
support the phenomenon that humans have an irrevers-
ible but mice have a reversible placental alternation [81]
(Table 1). It was summarized by Harper et al. [81] that the
duration of changes in the placenta determines the
duration of programming on fetus. The species differences
in the effect of early-gestational MUN on adult phenotype
are attributed to the extent of placenta recovery.

Effects of prenatal CR in offspring’s reproduction
Intriguingly, MUN affects reproductive performances of
animal offspring. Two experiments in rats [82, 90] found
that female offspring exposed to prenatal CR had an ab-
errant ovarian follicle population, resulting in premature
ovarian failure and reduced reproductive lifespan.
Initially, these offspring had a significantly lower amount
of PMFs and higher amount of primary follicles in
prepubertal period. This observation indicates that in
female descendants, PMF pool is affected by MUN dur-
ing fetal life, and MUN advances the folliculogenesis,
resulting in an early puberty onset. When these offspring
reach adulthood, the number of PMFs and growing folli-
cles (i.e. secondary follicles, antral follicles) were signifi-
cantly reduced, suggesting that MUN causes a short
reproductive lifespan. The reason is that the expression
of genes, which are crucial for follicle maturation and
ovulation, was reduced by both increased ovarian oxida-
tive stress and impaired capacity for repairing oxidative
damage [90]. Collectively, the female rat offspring born
to mother with MUN have a more intensive and time-
limited reproductive lifespan, and they can reproduce
more successfully [82, 90] (Table 1). The experiment in
sheep had a similar finding [91].
Regard to humans, Painter et al. [92] discovered a

similar finding that women born to mother with MUN
could reproduce more successfully if they were fed with
improved nutrition in their postnatal period. However,
Lumey et al. [93] raised an objection to Painter’s finding.
He thought there was no difference in reproductive ac-
tivities like delivery between women exposed to MUN
during their fetal life and those not exposed to MUN

during fetal life. And he attributed this inconsistent result
to the fact that the Painter database was inappropriate and
thus was not representative. In fact, Yarde et al. investi-
gated mothers who were exposed to Dutch famine during
gestation and discovered that MUN does not affect repro-
ductive performances of offspring [83] (Table 1).

The roles of CR in reproductive-related diseases
In women, CR enables to develop hypothalamic amenor-
rhea. The direct pathology is the impairment of HPO axis.
The reduced GnRH secretion attenuates the gonadotropin
secretion, therefore ovarian follicle development and E2
synthesis are inhibited. The insufficient E2 concentration
cannot trigger the pre-ovulatory gonadotropin surges,
culminating in anovulation and amenorrhea. Also, the re-
duced plasma leptin and the increased plasma ghrelin,
which represent the low energy status, compromise the
function of HPO axis and thus result in amenorrhea.
Cognitive-behavioral therapy is considered as the possible
treatment of amenorrhea, and E2 level is the index to as-
sess the extent of HPO axis recovery [74, 84] (Table 1).
Approximately 5–10% reproductive-age women have

polycystic ovary syndrome (PCOS), which is one of the
commonest endocrine diseases. It is characterized by
hyperandrogenism and chronic anovulation. Women
with PCOS carry 2.7-fold increased risk of endometrial
carcinoma [85, 94]. Noticeably, CR exerts a benefit effect
on obese PCOS patients. In obese young adult women
with PCOS, CR-induced weight loss ameliorates
androgen overproduction, restores ovulatory cyclicity,
improves menstrual function and attenuates insulin
resistance. Therefore, dietary weight loss is considered
to become the first-line treatment in obese PCOS
patients [85, 95] (Table 1). Interestingly, giving CR in ad-
vance increases the survival rate of prepubertal obese/
PCOS-prone rats when they encounter famine [96]. LH
hypersecretion is observed in obese PCOS women, and
CR usually attenuates pulsatile LH secretion in healthy
women. However, daily LH secretion is still increased
even these obese PCOS patients are treated with CR
[97]. In addition, preserving E2-dependent negative feed-
back to LH can predict follicle maturation and ovulation
in obese PCOS patients who are treated with CR [95].
In addition, another beneficial effect of CR displays on

breast cancer. The study of women found that CR de-
creases the susceptibility of breast cancer. In contrast,
excessive caloric intake increases the risk of developing
BC. Researchers proposed that the combination of mod-
erate CR and physical exercise is a prospective strategy
to prevent breast cancer [86] (Table 1).

Conclusion
In this review, we summarize that CR exerts both positive
and negative effects on female reproduction system. CR
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impairs HPO axis and indeed reduces fertility in female
mammals. Kisspeptin neuron is the crucial hub that links
low energy state and HPO axis. In this review, there are
three differences between rodents and humans. Firstly, CR
in rodents simultaneously increases reproductive capacity
and prolongs fertility lifespan. In contrast, CR advances
the menopause onset of women. Secondly, placental alter-
nation is reversible in mice while irreversible in women
when CR takes place at pregnancy. Thirdly, prenatal CR
shortens reproductive lifespan and increases fertility
success in female rat offspring. However, it does not affect
reproductive activities in human offspring. At last, we
summarize that CR causes hypothalamic amenorrhea but
ameliorates the deleterious condition of PCOS coupled
with obesity. In addition, CR decreases the morbidity of
breast cancer. The similarities and differences between
animal and human results courage researchers to find the
reasons behind them. Also, further studies focusing on
human are needed.
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