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Abstract

Background: Cell-free mitochondrial DNA (cf-mtDNA) in body fluids has attracted much attention for the purpose
of monitoring disease because of the clinical advantages. This study investigated whether the cf-mtDNA content in
human follicular fluid samples was associated with oocyte and embryo developmental competence.

Methods: We collected 225 individual follicular fluid samples from 92 patients undergoing conventional in vitro
fertilization (n = 53) or intracytoplasmic sperm injection (n = 39). cf-mtDNA and cell-free nuclear DNA (cf-nDNA)
were measured using real-time quantitative PCR for the ND1 and β-globin genes. Multivariate logistic regression
and linear regression were used to analyze data.

Results: The relative cf-mtDNA content (cf-ND1/cf-β-globin ratio) in follicular fluid was significantly lower in the
group showing blastocyst development than in the non-blastocyst group (P = 0.030). Additionally, the relative cf-
mtDNA content was significantly and positively correlated with the age of the female patient (P = 0.009), while the
relative cf-mtDNA content for older women (≥38 years old) with anti-Müllerian hormone (AMH) ≤1.1 ng/ml was
significantly higher than in those with AMH > 1.1 ng/ml (P <0.05). The cf-nDNA content was significantly positively
correlated with the antral follicle count (P = 0.012), and significantly negatively correlated with both the number of
days of stimulation and the total dose of gonadotropin administration (P = 0.039 and P = 0.015, respectively).
Neither cf-mtDNA nor cf-nDNA levels in follicular fluid were associated with oocyte maturation, fertilization, or Day
3 embryo morphological scoring.

Conclusions: The relative cf-mtDNA content in human follicular fluid was negatively correlated with blastulation
and positively correlated with the patient age, indicating that it is a promising bio-marker to evaluate oocyte
developmental competence.
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Introduction
Oocyte quality is a crucial factor influencing embryo de-
velopmental competence and clinical pregnancy rate,
but the evaluation of oocyte quality is mainly limited to
an assessment of morphological criteria in most in vitro
fertilization (IVF) laboratories. Several studies have iden-
tified potential bio-markers from follicular fluid and
granulosa cells [1–3], but their use remains controversial
and requires further validation so they cannot be used in
clinical applications. Additionally, the expression levels
of certain genes in cumulus cells showed promise, but
these were affected by ovarian stimulation protocols and
patient characteristics [4, 5].
Cell-free DNA (cf-DNA) in plasma or body fluids in-

cludes cell-free nuclear DNA (cf-nDNA) and cell-free
mitochondrial DNA (cf-mtDNA). cf-nDNA is widely
present in the physiological extracellular milieu, and has
been found in blood, urine, saliva, spinal fluid, semen,
and follicular fluid [6–12]. It is thought to have great ap-
plication value in the diagnosis and prognosis of cancer
and prenatal diagnosis [13–16]. Cf-mtDNA is also de-
tected in various body fluids [10, 17, 18] and has some
unique characteristics compared with nuclear DNA, in-
cluding a short length, simple molecular structure, and
multiple copy number.
Mitochondria are very important organelles that func-

tion as powerhouses but are also involved in numerous
other cellular functions including cell proliferation,
apoptosis, and intracellular calcium homeostasis [19,
20]. An aberrant amount of mtDNA can lead to mito-
chondrial dysfunction and the development of disease.
Therefore, it is reasonable that cf-mtDNA is a promising
molecular marker with high sensitivity. Indeed, accumu-
lating evidence demonstrates that plasma or serum cf-
mtDNA levels differ significantly between cancer pa-
tients and healthy individuals [21, 22] .
cf-DNA mainly derives from apoptotic cells and live

cells showing active secretion [23]. Apoptotic cells re-
lease not only nuclear DNA but also mtDNA. Scalici et
al studied the integrity of cf-DNA in follicular fluid and
showed that around 85% of follicular fluid cf-DNA de-
rived from cell apoptosis [8]. Another origin of cf-
mtDNA is mitochondrial dysfunction. Recently, Kansaku
et al reported that cultured oocyte–cumulus complexes
with mitochondrial dysfunction secreted more cf-
mtDNA into the medium than those with normal mito-
chondrial function [24].
The mitochondrial genome to nuclear genome ratio

(Mt/N), assessed using real-time quantitative PCR, is
often used to reflect changes in the mtDNA content,
and Malik et al proposed that changes in body fluid Mt./
N could be a biomarker of mitochondrial dysfunction
[25]. Therefore, we inferred that cf-nDNA in follicular
fluid could reflect granulosa cell apoptosis, while the

relative cf-mtDNA content could reflect the change in
mitochondrial function and dynamics of granulosa cells.
Several studies revealed that the amount of cf-DNA in
human follicular fluid was associated with the corre-
sponding embryo quality, and could be used as a novel
biomarker to predict the quality of embryos [8, 16].
However, the relationship of cf-mtDNA in human fol-
licular fluid and oocyte and embryo developmental com-
petence is unclear.
Therefore, in the present study, we investigated the re-

lationship between follicular fluid cf-mtDNA levels and
oocyte developmental competence and explored the ef-
fect of patient clinical characteristics on cf-mtDNA
levels in follicular fluid.

Materials and methods
Patients’ characteristics
This research recruited 92 women enrolled in IVF (n =
53) or intracytoplasmic sperm injection (ICSI) (n = 39)
cycles at the Center for Reproductive Medicine of Tongji
Medical College at the Huazhong University of Science
and Technology from October 2017 to July 2018. The
women’s ages ranged from 21 to 45 years (mean ± SD:
32.13 ± 4.85 years) and their body mass index (BMI)
ranged from 16.60 kg/m2 to 33.90 kg/m2 (mean ± SD:
22.38 ± 3.58 kg/m2). The duration of infertility was
4.20 ± 3.57 years, and 53% of couples had primary infer-
tility. Female infertility had been identified in 60% cou-
ples, male factors in 23%, and mixed infertility in 17%.
The number of days of stimulation ranged from 3 to 22
days (mean ± SD: 9.75 ± 2.74), and the total dose of go-
nadotropins received ranged from 225 to 6800 IU
(mean ± SD: 2089.69 ± 835.12). Baseline hormonal levels
(follicle-stimulating hormone [FSH], luteinizing hor-
mone [LH], and 17β-estradiol [E2]) and anti-Müllerian
hormone (AMH) were assessed using the Beckman
DXI800 chemiluminescence analyzer (Beckman Coulter
Inc., Brea, CA) on the third day of the menstrual cycle
for each patient. Levels of AMH < 1.1 ng/ml are consid-
ered to reflect a reduced ovarian reserve, and levels ≥1.1
ng/ml are normal ovarian reserve [26]. Levels of FSH ≥ 9
IU/L represent a reduced ovarian reserve.
The ovarian stimulation regimens used included long

agonist protocols, ultra-long agonist protocols, antagon-
ist protocols, and progestin-primed ovarian stimulation
(PPOS). Oral progestin was first given to prevent a pre-
mature LH surge in PPOS. Pituitary inhibition was per-
formed with a gonadotropin-releasing hormone agonist
or antagonist for other protocols. FSH stimulation was
monitored by measuring serum E2 levels and follicular
size. Human chorionic gonadotrophin (hCG) (Livzon,
Zhuhai, China) was injected when at least three follicles
reached a diameter of 18 mm or more by ultrasound
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inspection. Oocytes were retrieved by trans-vaginal
ultrasound-guided puncture 36 h after hCG injection.

Morphological assessment of oocytes, cleavage embryos,
and blastocysts
Cumulus cells were stripped to observe the extrusion of
the first polar body of the oocyte prior to ICSI (Day 0),
and oocytes extruding the first polar body were called ma-
ture oocytes. For IVF oocytes, oocyte maturity was con-
firmed when the cumulus cells were stripped 4–6 h after
IVF. Zygotes with pronuclei present 18–20 h after micro-
injection or insemination were considered representative
of fertilization. Oocytes that underwent cleavage on Day 2
without pronuclei on Day 1 were also considered repre-
sentative of fertilization for IVF. Day 3 embryos were mor-
phologically scored in accordance with the current
consensus system [27]. High-quality embryos were defined
as those with at least six blastomeres of a uniform shape
on Day 3, and with fragments less than 25%. One or two
high-quality embryos were transferred or frozen on Day 3,
and the rest were cultured to the blastocyst stage to be
transferred or frozen. Blastocysts were evaluated morpho-
logically based on the expansion of the blastocoele (3–6
stages) and the number and cohesiveness of the inner cell
mass and trophectoderm (Grade A, B, and C), according
to Gardner’s criteria [28].

Follicular fluid collection and preparation
Two hundred and twenty-five follicular fluid samples
without flushing media were collected from individual
follicles of 92 patients, centrifuged at 3000×g for 15 min
and 16,000×g for 10 min, and then immediately stored at
− 80 °C until cf-nDNA and cf-mtDNA quantification. To
prevent any blood pollution, only clear follicular fluid
samples were involved, while bloodstained and cloudy
follicular fluid samples were discarded.

Quantification of cf-nDNA and cf-mtDNA
cf-DNA was extracted and purified from follicular fluid by
the BeaverBeads™ Circulating DNA kit (BEAVER, Suzhou,
China) according to the manufacturer’s instructions. cf-
nDNA and cf-mtDNA in individual follicular fluid samples
were estimated by amplification using β-globin and ND1
primers using real-time quantitative polymerase chain reac-
tion (qPCR). Primers were designed and synthesized by
Sangon Biotechnology Co., Ltd. (Shanghai, China). Primers
for ND1 were 5′-CCCTAAAACCCGCCACATCT-3′ (for-
ward) and 5′-GAGCGATGGTGAGAGCTAAGGT-3′
(reverse), which amplify a 69 bp DNA fragment. β -globin
was detected using the following primers: 5′-AAAG
GTGCCCTTGAGGTTGTC-3′ (forward) and 5′-TGAA
GGCTCATGGCAAGAAA-3′ (reverse), which amplify a
77 bp DNA fragment. The amplicons were detected using
primer sequences and verified in the GenBank database

(Additional file 1: Figure S1). Standard curves were made
using purified plasmid DNA corresponding to ND1 and β-
globin (Additional file 1: Figure S1). The relative content of
cf-mtDNA in follicular fluid was expressed by the cf-ND1/
cf-β-globin ratio. All reactions were performed in duplicate
on the StepOne™ and StepOnePlus™ Software system (Ther-
moFisher Scientific, Waltham, MA, USA). Reactions were
performed in a total volume of 20 μl containing 2 μl of sam-
ple template (elution product of the BeaverBeads™ Circulat-
ing DNA kit), 10 μM of forward and reverse primers, and
10 μl of Hieff™ qPCR SYBR® Green Master Mix (High Rox
Plus; Yeasen, Shanghai, China). Cycling conditions were as
follows: 95 °C for 30 s, then 40 cycles of 95 °C for 5 s and
60 °C for 30 s.

Statistical analysis
All measurement data were presented as means ± stand-
ard deviation (SD), or as median values and the inter-
quartile range (IQR), if appropriate. Statistical analyses
were performed using the Statistical Package for Social
Sciences program, Version 12.0 (SPSS Inc., Chicago, IL,
USA). Linear regression was carried out for the effect of
patient clinical information on cf-nDNA and cf-mtDNA
levels in follicular fluid. The Wilcoxon rank sum test
was performed to compare different oocyte developmen-
tal outcomes. Multivariate logistic regression was then
carried out to further characterize cf-nDNA and cf-
mtDNA levels as predictors of embryo grade and blasto-
cyst development. One way non-parametric analysis of
variance (Kruskal-Wallis test) was used to analyze cf-
nDNA and cf-mtDNA statistical data among four groups
by age combined with AMH or FSH. Statistical signifi-
cance was assumed at P < 0.05.

Results
The relationship between relative cf-mtDNA content in
follicular fluid and embryo developmental competence
Of 225 individual follicular fluids, a total of 190 had ma-
ture oocytes (84%), 17 had immature oocytes (8%), 16
had no oocytes (7%), one had a degenerated oocyte, and
one was naked without a zona pellucida. The relative cf-
mtDNA content (cf-ND1/cf-β-globin ratio) was signifi-
cantly higher in follicular fluids with than without oo-
cytes (P < 0.01; Fig. 1a). Because the criteria for oocyte
maturation and fertilization differ between IVF and ICSI,
we carried out statistical analysis for IVF and ICSI oo-
cytes separately (Table 1). The relative cf-mtDNA con-
tent did not differ between mature and immature
oocytes, or between fertilized and non-fertilized oocytes
for IVF or ICSI (P > 0.05).
According to cleavage embryo evaluation criteria, 89

(89/142, 63%) embryos were of high quality and 53 (53/
142, 37%) were poor quality. There was no significant
difference in the relative cf-mtDNA content between
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high-quality and poor-quality embryos (P > 0.05). In our
samples, 43 embryos were cultured until Day 6. Twenty-
two (51%) embryos developed into blastocysts, and 21
(49%) embryos arrested or failed to develop on Day 5 or
Day 6. The relative cf-mtDNA content in the blasto-
cystgroup was significantly lower than in the non-
blastocyst group (2.84 versus 7.80; P = 0.030; Fig. 1c and
Table 2).

Effect of patient characteristics on the relative cf-mtDNA
content in follicular fluid
The relative cf-mtDNA content in follicular fluid corre-
lated significantly positively with age (β ± SE: 0.22 ±

0.085, P = 0.009) (Table 3; Fig. 2) but not with AMH,
basal FSH level, or antral follicle count (AFC).
Patients were divided into four groups according to

age and AMH level: age ≥ 38 years old and AMH >
1.1 ng/ml, age ≥ 38 years old and AMH ≤1.1 ng/ml,
age < 38 years old and AMH > 1.1 ng/ml, and age < 38
years old and AMH ≤1.1 ng/ml. The relative cf-
mtDNA content in the two groups of age ≥ 38 years
old was significantly higher than that in both age < 38
years old groups (P < 0.05; Fig. 3a). Moreover, for
women aged ≥38 years old, the relative cf-mtDNA
content when AMH ≤1.1 ng/ml was significantly
higher than when AMH > 1.1 ng/ml (P < 0.05; Fig. 3a).

Fig. 1 The relationship of cell-free nDNA and the relative cell-free mitochondrial DNA (cf-ND1/cf-β-globin ratio) levels in follicular fluids and
oocyte presence and blastulation. No oocyte means that no oocyte was found in the follicular fluid. No blastocyst means that embryos did not
develop into the blastocyst stage. *P < 0.05, **P < 0.01

Table 1 the cf-nDNA and the relative cf-mtDNA (cf-ND1/cf-β-globin ratio) levels in human follicular fluids for oocytes performing IVF
or ICSI

Total IVF ICSI

FF associated with n of
FF(%)

cf-nDNA MD
(IQR)

relative cf-mtDNA
MD (IQR)

n of FF(%) cf-nDNA
MD (IQR)

relative cf-mtDNA
MD (IQR)

n of
FF(%)

cf-nDNA
MD (IQR)

relative cf-mtDNA
MD (IQR)

Mature oocytes
(MII)

190
(91.79)

0.24 (0.13–
0.48)

5.70 (3.66–9.97) 118
(91.47)

0.21 (0.11–
0.53)

5.80 (3.90–9.40) 72
(92.31)

0.25 (0.14–
0.36)

5.56 (3.23–10.05)

Immature oocytes
(MI or GV)

17
(8.21)

0.13 (0.07–
0.30)

6.50 (4.82–11.18) 11 (8.53) 0.19 (0.06–
0.29)

6.51 (3.88–14.86) 6
(7.69)

0.12 (0.09–
0.13)

6.63 (5.03–7.83)

Fertilized oocytes 170
(81.34)

0.23 (0.13–
0.46)

6.06 (3.90–10.01) 106
(80.92)

0.21 (0.11–
0.50)

6.51 (4.02–10.01) 64
(82.05)

0.25 (0.14–
0.38)

5.46 (2.99–10.01)

Unfertilized
oocytes

39
(18.66)

0.18 (0.08–
0.37)

5.57 (3.72–10.16) 25 (19.08) 0.20 (0.07–
0.50)

5.11 (2.88–10.23) 14
(17.95)

0.13 (0.09–
0.26)

7.78 (4.94–9.97)

Data are presented as MD (IQR). Percentages are calculated within groups. FF follicular fluid. MI metaphase I, MII metaphase II, GV germinal vesicle, MD Median,
IQR interquartile range
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Similar results were observed for patient age and FSH
levels (Fig. 3b).
The relative cf-mtDNA content in follicular fluid was

not associated with BMI, the ovarian stimulation regi-
men, number of days of stimulation, or the total dose of
gonadotropins (Table 3).

Relationship of the cf-nDNA level in follicular fluid and
embryo developmental competence
The median quantity and the IQR of cf-nDNA levels
measured by β -globin qPCR in 225 human follicular
fluid samples from individual follicles was 0.23 ng/ml
(IQR: 0.12–0.46 ng/ml). cf-nDNA levels did not differ in
follicular fluids with and without oocytes (P > 0.05; Fig.
1b). cf-nDNA levels in follicular fluids were not associ-
ated with oocyte maturation, fertilization, or Day 3 em-
bryo morphological scoring. cf-nDNA levels were higher
in follicular fluids where the oocytes were fertilized and
reached the blastocyst stage than in those with no

blastocyst development (0.63 ng/ml versus 0.14 ng/ml),
but the difference was not significant after multivariate
logistic regression (P = 0.071; Fig. 1d; Table 2).

Effect of patients’ clinical characteristics on cf-nDNA
levels in follicular fluids
There was no significant correlation between cf-
nDNA levels in individual follicular fluid samples and
patient age, BMI, AMH, basal hormone (basal FSH,
LH, and E2), or the ovarian stimulation regimen (P >
0.05). The AFC was significantly positively correlated
with the amount of cf-nDNA in follicular fluid (β ± SE:
0.026 ± 0.017; P = 0.012; Table 3). Moreover, both the
number of days and total dose of gonadotropin admin-
istration significantly and negatively affected cf-nDNA
levels in follicular fluid (β ± SE: − 0.019 ± 0.05 and −
0.027 ± 0.0002, respectively; P = 0.039 and P = 0.015,
respectively; Table 3).

Table 2 Relationship of the cf-nDNA and the relative cf-mtDNA (cf-ND1/cf-β-globin ratio) levels in human follicular fluid with
embryo development outcomes

FF associated with n of
FF(%)

cf-nDNA (ng/ml) relative cf-mtDNA

MD (IQR) OR (95% CI) p MD (IQR) OR (95% CI) p

High-quality embryos 89 (62.68) 0.23 (0.13–0.50) 0.94 (0.78, 1.12) 0.46 5.27 (2.99–9.67) 1.00 (0.95, 1.05) 0.94

poor-quality embryos 53 (37.32) 0.24 (0.13–0.32) 7.39 (4.14–10.07)

blastocysts 22 (51.16) 0.63 (0.21–1.81) 26.43 (0.75, 929.72) 0.071 2.84 (1.53–6.99) 0.87 (0.76, 0.99) 0.030

No blastocysts 21 (48.84) 0.14 (0.08–0.25) 7.80 (4.66–10.34)

Percentages are calculated within groups. Data are presented as MD (IQR) and are analyzed using multivariate logistic regression. Statistical significance was
assumed at P < 0.05. FF follicular fluid, MI metaphase I, MII metaphase II, GV germinal vesicle, OR odds ratio, CI confidence interval, MD Median, IQR
interquartile range

Table 3 Patients’ characteristics association with the cf-nDNA and the relative cf-mtDNA (cf-ND1/cf-β-globin ratio) levels in
individual human follicular fluid

Variable Mean n (%) Min-Max SD cf-nDNA relative cf-mtDNA

β ± SE p β ± SE p

Age (years) 32.13 225 (100) 21–45 4.85 −0.034 ± 0.03 0.25 0.22 ± 0.085 0.009

BMI (kg/m2) 22.38 225 (100) 16.6–33.9 3.58 0.069 ± 0.044 0.12 −0.15 ± 0.13 0.25

AMH (ng/ml) 3.37 219 (97.3) 0.33–8.67 1.99 0.0007 ± 0.075 0.70 0 ± 0.20 0.89

Basal FSH (IU/L) 7.49 225 (100) 1.79–17.52 2.60 0.025 ± 0.057 0.66 −0.27 ± 0.16 0.09

Basal LH (IU/L) 4.45 225 (100) 0.51–21.41 2.49 0.001 ± 0.059 0.25 0.016 ± 0.17 0.61

Basal E2 (pg/ml) 43.56 225 (100) 6–299.8 39.24 0 ± 0.004 0.88 0.006 ± 0.010 0.26

Antral follicle count 17.48 225 (100) 3–40 7.84 0.026 ± 0.017 0.012 −0.050 ± 0.053 0.34

Days of stimulation 9.75 225 (100) 3–22 2.74 −0.019 ± 0.05 0.039 0.0023 ± 0.15 0.48

Total dose of gonadotropins (IU) 2089.69 225 (100) 225–6800 835.12 −0.027 ± 0.0002 0.015 0.0014 ± 0.0005 0.58

Ultra-long protocol – 97 (43.11) – – ref

Long protocol – 17 (7.56) – – 0.054 ± 0.57 0.96 −1.56 ± 1.64 0.34

Antagonist protocol – 71 (31.56) – – 0.17 ± 0.34 0.63 −0.18 ± 0.98 0.86

PPOS – 40 (17.78) – – −0.37 ± 0.41 0.36 1.33 ± 1.17 0.26

Data are presented as means ±standard deviation (SD). β ± SE, regression coefficient ± standard error. P-values is the result of linear mixed models. Statistical
significance was assumed at P < 0.05.BMI, body mass index. FSH follicle-stimulating hormone, LH luteinizing hormone, E2 17β-estradiol, AMH anti-Müllerian
hormone, PPOS progestin-primed ovarian stimulation
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Discussion
In the present study, we showed for the first time that
the relative cf-mtDNA content (cf-ND1/cf-β-globin ra-
tio) in human individual follicular fluid was associated
with the corresponding potential of oocytes that had de-
veloped to the blastocyst stage. Moreover, it was also
found to be positively correlated with patient age.
A key factor of poor oocyte quality in older women is

mitochondrial dysfunction [19]. Several studies revealed
a significant decrease in the mtDNA of oocytes and cu-
mulus cells in older women compared with young
women [19, 29]. Our work indicated that the relative cf-
mtDNA content in follicular fluid of older women was

much higher than in younger women. Moreover, in older
women, the relative cf-mtDNA content in follicular fluid
when AMH was > 1.1 ng/ml was significantly lower than
in those with AMH < 1.1 ng/ml. We inferred from this
that mitochondrial dysfunction in older women led to
an increase of cf-mtDNA in follicular fluid and a
decrease of mtDNA in oocytes and cumulus cells. Mito-
chondria are major determinants of oocyte developmen-
tal competence. Thus the relative cf-mtDNA level in
follicular fluid could reflect oocyte quality. Our result
demonstrated that the relative cf-mtDNA content in the
follicular fluid of the group showing blastocyst develop-
ment was significantly lower than in the non-blastocyst
group (P = 0.030) using multivariate logistic regression.
Intriguingly, the relative cf-mtDNA content was not af-
fected by BMI, the ovarian stimulation regimen, or the
days and doses of ovarian stimulation. Therefore, the
relative cf-mtDNA content of follicular fluid is a more
promising bio-marker than the expression of certain
genes in cumulus cells in assessing oocyte developmen-
tal competence.
The relative cf-mtDNA content was not associated

with oocyte fertilization or the cleavage embryo score.
Sirard et al proposed that oocyte developmental compe-
tence included five separate events: the ability to resume
meiosis, cleavage upon fertilization, development into a
blastocyst, the induction of pregnancy, and the gener-
ation of healthy offspring [30]. The ability to develop
into a blastocyst is the most crucial marker of oocyte
competence; it is readily determined so is widely used by
most laboratories, and is of use because a blastocyst has

Fig. 2 Correlations between the relative cf-mtDNA content (cf-ND1/
cf-β-globin ratio) in follicular fluid and patient age

Fig. 3 Effect of patient age combined with AMH or FSH on the relative cf-mtDNA content (cf-ND1/cf-β-globin ratio) in human follicular fluid.
*P < 0.05, **P < 0.01
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more chance of inducing pregnancy than a cleaved em-
bryo [31]. By contrast, embryo morphological scoring
based on static observations only is considered a limited
method of evaluating embryo quality [32]. In the present
study, we observed a low number of embryos undergo-
ing blastocyst culture, so additional studies of larger
sample sizes are needed to further confirm the relation-
ship between the cf-mtDNA content in follicular fluid
and blastulation and embryo implantation.
The cf-nDNA level measured by β-globin was not as-

sociated with the cleavage embryo grade. Conversely,
Scalici et al and Traver et al indicated that cf-DNA in
human follicular fluid was associated with embryo score
and the extent of fragmentation [8, 33]. This discrepancy
may arise from differences in cf-DNA extraction and
quantitative methods. For example, the earlier studies
did not extract cf-DNA from follicular fluid, while we
used a technique based on magnetic beads. Although
DNA extraction and purification steps may result in a
loss of DNA, the elimination of these steps may cause
components in serum to inhibit the PCR efficiency.
Additionally, we used β-globin primers to quantify cf-
nDNA, while the earlier studies used ALU115 primers.
ALU is the most abundant interspersed repeated se-
quence in the human genome and is found at a copy
number of ∼1.4 × 106 per genome [34]. By contrast, the
β-globin gene is a single copy sequence of the human
genome that is commonly used in the quantitative ana-
lysis of cf-nDNA [35, 36]. We chose to amplify it in our
study because we wished to determine the Mt/N ratio so
the amplification of a single copy sequence was more
suitable.
It is also notable that we detected higher cf-nDNA

levels in follicular fluid corresponding to blastocyst de-
velopment than in that without blastocysts though the
difference was not significant (P = 0.071). Cf-DNA in fol-
licular fluid mainly derives from apoptotic granulosa
cells [8] . Our results appear to suggest that the high cf-
nDNA level, or high apoptotic level of granulosa cells
was a reflection of good quality oocyte, which is not in
agreement with previous work that revealed an increased
level of granulosa cell apoptosis in older women that
was associated with a decline in oocyte quality [37].
However, previous results were affected by many con-
founding factors and methods of apoptotic evaluation.
Recently, Regan et al proposed that granulosa cell apop-
tosis was an integral part of normal follicle development
that varied in a stage-dependent manner [38]. Two crit-
ical stages of granulosa cell apoptosis are dominant fol-
licle selection and preovulatory maturation. Both stages
are observed at higher levels in younger compared with
older women [38, 39]. Because follicular fluid samples
collected during oocyte retrieval in the present study
were only obtained from the preovulatory stage, it is

conceivable that the low cf-nDNA level detected was a
reflection of poor quality oocyte in patients.
We also found that AFC was positively correlated with

cf-nDNA levels in follicular fluid, and both the number
of days and total gonadotropin dose were negatively
linked with cf-nDNA levels in follicular fluid, which are
in agreement with the above result. AFC is a known in-
dicator of ovarian reserve. High FSH doses were previ-
ously associated with a decrease in the number of
transferable embryos and live births [40, 41]. We there-
fore inferred that higher cf-nDNA levels in the follicular
fluid of preovulatory follicles represented normal follicu-
lar development and oocyte quality. Further study is
needed to clarify this relationship.

Conclusion
The current study showed that changes in the relative
cf-mtDNA content of human follicular fluid correlate
with blastocyst developmental potential and patient age,
suggesting that the relative cf-mtDNA content has po-
tential use in evaluating oocyte and embryo develop-
mental competence. The cf-mtDNA and cf-nDNA
cannot be separated and detected accurately on the con-
dition of current technologies. A deeper understanding
of the mechanism underlying cf-mtDNA origin and ex-
istence forms in human follicular fluid helps to find a
more accurate method to detect cf-mtDNA amount, and
promote the clinic application of cf-mtDNA in the
future.
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