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Abstract

Decidualization is an intricate biological process where extensive morphological, functional, and genetic changes take
place in endometrial stromal cells to support the development of an implanting blastocyst. Deficiencies in decidualization
are associated with pregnancy complications and reproductive diseases. Decidualization is coordinately regulated by
steroid hormones, growth factors, and molecular and epigenetic mechanisms. Transforming growth factor β (TGFβ)
superfamily signaling regulates multifaceted reproductive processes. However, the role of TGFβ signaling in uterine
decidualization is poorly understood. Recent studies using the Cre-LoxP strategy have shed new light on the critical role
of TGFβ signaling machinery in uterine decidualization. Herein, we focus on reviewing exciting findings from studies
using both mouse genetics and in vitro cultured human endometrial stromal cells. We also delve into emerging
mechanisms that underlie decidualization, such as non-coding RNAs and epigenetic modifications. We envision that
future studies aimed at defining the interrelationship among TGFβ signaling circuitries and their potential interactions
with epigenetic modifications/non-coding RNAs during uterine decidualization will open new avenues to treat pregnancy
complications associated with decidualization deficiencies.
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Background
Transforming growth factor β (TGFβ) superfamily proteins
regulate a variety of cellular functions via serine/threonine
kinase receptors and SMAD proteins [1]. More than 40
members of TGFβ superfamily ligands have been identified,
which include TGFβs, bone morphogenetic proteins
(BMPs), anti-Müllerian hormone (AMH), activins and in-
hibins, growth differentiation factors (GDFs), and nodal
growth differentiation factor (NODAL) [2]. The ligand-
receptor interaction induces a signal transduction cascade,
where the type II receptors (i.e., TGFBR2, ACVR2,
ACVR2B, BMPR2, and AMHR2) activate functionally
related type I receptors (i.e., ACVRL1/ALK1, ACVR1/
ALK2, BMPR1A/ALK3, ACVR1B/ALK4, TGFBR1/ALK5,
BMPR1B/ALK6, and ACVR1C/ALK7) via phosphorylation.
The activated TGFβ receptor complexes interact with intra-
cellular receptor-regulated SMADs (R-SMADs), which are
then associated with SMAD4 to gain access to nuclear tran-
scriptional machinery and modulate gene transcription. In

addition to the well-described canonical SMAD-dependent
signaling branch, TGFβ superfamily members also utilize
diverse pathways independent of SMAD transcription
factors [3] (Fig. 1a).
Growing evidence has demonstrated the involvement

of TGFβ signaling in many fundamental reproductive
events highlighted below. (i) Folliculogenesis. TGFβ
superfamily signaling regulates follicle growth and acti-
vation [4]. Some oocyte-derived TGFβ superfamily
growth factors are obligatory for follicular development
[1]. It also appears that these growth factors are import-
ant regulators of oocyte quality, evidenced by enhanced
developmental potential of in vitro matured oocytes sup-
plemented with recombinant oocyte-produced TGFβ
family proteins such as GDF9 and BMP15 [5, 6]. (ii)
Ovulation. Ovulatory defects have been observed in mice
lacking SMAD4, SMAD2/3, or activin/inhibin subunits
[7–11]. Several elegant reviews are available on the topic
of TGFβ signaling in follicular development and ovula-
tion [12–16]. (iii) Maternal-embryo communication.
Maternal-embryo interactions are of critical importance
for a successful pregnancy. TGFβ proteins have been
suggested to play a role in the maternal-fetal interface
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during pregnancy [17, 18]. A recent study revealed a role
for BMP signaling in mediating crosstalk between bovine
embryos and the oviduct during early developmental
stages, where the embryo-oviduct interactions alter BMP
signaling differentially within oviductal cells and em-
bryos [19]. (iv) Embryonic development. TGFβ super-
family members are implicated in the development of
preimplantation embryos. A role for BMP4 and inhibitor
of DNA binding 3 (ID3) has been suggested in the regu-
lation of embryo development in the bovine [20]. TGFβ1
mRNA is expressed in fertilized mouse oocytes and blas-
tocysts [21]. Moreover, BMP signaling activity is detect-
able in mouse embryos as early as the 4-cell stage and is
needed for the cleavage of preimplantation embryos
[22]. Besides its role in preimplantation embryonic
development, TGFβ superfamily signaling is required for
multiple developmental events in post-implantation
embryos, such as patterning and gastrulation [23–25].
(v) Reproductive tract morphogenesis and function.
TGFβ superfamily signaling regulates reproductive tract

formation [26–28]. We have revealed that conditional
knockout (cKO) of Tgfbr1 in the female reproductive
tract using anti-Müllerian hormone receptor type 2
(Amhr2)-Cre leads to the development of oviductal
diverticula, myometrial defects, and infertility [29, 30].
We have also identified a potential role for TGFBR1-
mediated signaling in regulating uterine epithelial cell
function [31]. (vi) Decidualization. The role of TGFβ
superfamily signaling in uterine decidualization is
discussed in the following section. Table 1 lists major
functions of the TGFβ superfamily in reproduction and
development along with some important signaling com-
ponents that are involved in the regulation of those
functions.
It is important to note that, in addition to its role

in female reproductive function, TGFβ signaling
also regulates the development and function of the
male reproductive system such as testis develop-
ment [32]. However, this topic is beyond the scope
of this review.

Fig. 1 Schematic illustration of TGFβ superfamily signaling and its involvement in decidualization. a A diagram of TGFβ superfamily signaling.
TGFβ superfamily ligands (e.g., TGFβs, activins, and BMPs) induce the formation of membrane-associated receptor complexes comprising type 1
and type 2 receptors. Activated receptor machinery phosphorylates SMAD proteins (i.e., SMAD2/3 and SMAD1/5/9), which cooperate with SMAD4
to function in a canonical pathway. The non-canonical pathways generally include, but are not limited to, ERK1/2, JNK, P38, and PI3K/AKT, the activation of
which is SMAD-independent. b TGFβ signaling components and uterine decidualization. Experimental evidence, particularly those from genetically modified
mouse models, has revealed critical functions of various TGFβ signaling elements in the process of uterine decidualization. Disruption of BMP2, ACVR1, BMPR1A,
BMPR2, SMAD1/5/4, SMAD3, or FST leads to defects in uterine decidualization. In contrast, LEFTY seems to be a suppressor of uterine decidualization. Further
clarification of the function of TGFβ superfamily ligands (e.g., TGFβs and activins) and the usage of type 1 and type 2 receptors by different signaling molecules
is warranted. Studies are also needed to assess the role of the non-canonical TGFβ signaling branch in decidualization and potential interactions between TGFβ
superfamily signaling and epigenetic modifications and microRNAs in this key remodeling event. As decidualization is a highly orchestrated process regulated
by hormonal, cellular, and molecular mechanisms, this diagram focuses on highlighting molecules associated with the TGFβ signaling pathway
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Uterine decidualization: A critical event during
pregnancy
A successful pregnancy relies on a delicate interplay among
hormonal, cellular, and molecular signals. Decidualization,
a process where extensive remodeling of the endometrium
occurs to set the stage for embryo development, is a key
event in pregnancy in some mammals including mice and
humans. Despite its critical role in pregnancy, the timing of
decidualization differs among species. Decidualization is
induced by attachment of the blastocyst to uterine luminal
epithelium in mice, whereas differentiation of the estradiol
(E2)-primed endometrium occurs following the postovula-
tory rise of progesterone (P4) during the secretory phase of
menstrual cycle in humans [33, 34]. During decidualization,
dramatic cellular and molecular changes occur, as endo-
metrial stroma cells (ESCs) transform from fibroblast-like
cells into large polygonal cells that are rich in cytoplasmic
glycogen and lipid droplets [35]. Stromal cell polyploidy is a
unique phenomenon that occurs during decidual cell differ-
entiation following blastocyst implantation [34]. Decidual
cell-secreted factors include prolactin (PRL) and insulin-
like growth factor binding protein-1 (IGFBP-1) that are key
regulators of decidualization and are widely used as
markers of decidualization [36, 37].
Ovarian steroid hormones, E2 and P4, play fundamental

roles in implantation of blastocysts and uterine decidualiza-
tion [38]. It has been increasingly recognized that progester-
one receptor (PGR) signaling is of paramount importance
for blastocyst implantation, uterine decidualization, and
pregnancy maintenance [38, 39]. P4, via binding to its cog-
nate receptor, activates a complex array of molecular events
mediated by Indian hedgehog (IHH) [40], BMP2 [41],
nuclear receptor subfamily 2 group F member 2 (NR2F2/
COUP-TFII) [42], Wingless-type MMTV integration
site family (WNT) 4 [43], and HAND2 [44] during
implantation and/or decidualization. Examples of
additional PGR-associated regulators of endometrial

function include forkhead box O1 (FOXO1) [45],
CCAAT/enhancer-binding protein beta (CEBPB) [46],
and homeobox A10 (HOXA10) [47, 48]. Of note,
immune cells, particularly uterine natural killer (uNK)
cells, can be recruited to regulate important events
such as decidual angiogenesis during pregnancy [49].
In the following sections, we review literature that

documents a role for TGFβ superfamily signaling in
uterine decidualization, with a focus on major findings
from genetically modified mouse models and cell culture
studies using human ESCs.

TGFB superfamily signaling regulates uterine
decidualization
Evidence from mouse models
TGFβ superfamily ligands
The role of TGFβ ligands in uterine decidualization in mice
is not clear. Existing evidence suggests that TGFβ signaling
pathway may be involved in regression of the uterine
decidua in the rat, as TGFβ1, TGFβ2, TGFβ3 are highly
expressed during the regression of the decidua basalis,
accompanied by an upregulation of expression of phos-
phorylated SMAD2 [50]. In vitro studies using rat decidual
cells in culture revealed a role of TGFβ1 in inducing cellu-
lar apoptosis potentially through activation of SMAD2 and
downregulation of AKT and X-linked inhibitor of apoptosis
(XIAP) [50]. TGFβ2 and TGFβ3 also promote apoptosis in
cultured decidual stromal cells potentially through regula-
tion of AKTand XIAP expression [51].
Compelling evidence supporting an essential role for

BMPs in uterine decidualization derives from studies
using conditional deletion of Bmp2 in the uteri of mice
[41]. Loss of BMP2 in the uterus renders the mouse
infertile and the uterus is unable to decidualize, owing
to the dysregulation of multiple genes including Wnt4/6,
FK-506 binding proteins (Fkbps), and prostaglandin
synthase2 (Ptgs2) [41]. Recently, conditional deletion of

Table 1 Major roles of TGFβ superfamily in reproduction and development

Reproductive event Main signaling component Reference

Folliculogenesis TGFβs, GDF9, BMP2, BMP4, BMP7

Oocyte maturation BMP15, activin, inhibin, AMH [1, 4–16, 61, 105]

Ovulation BMPR1A, BMPR1B, SMAD2/3, SMAD4

Maternal-embryo interactions TGFβs, BMP7, BMPR1B, BMPR2, SMAD1, SMAD6 [17–19]

Implantation TGFβ1, ACVR1, BMPR1A, TGFBR1, BMP7 [52, 59, 64, 106]

Decidualization BMP2, SMAD1/5/4, SMAD2/3, ACVR1, BMPR1A, BMPR2, FST, LEFTY [41, 54, 57–60, 63, 67, 69]

Embryonic development TGFβs, BMP2, BMP4, BMP5, BMP6, BMP7, BMP8, INHBA, INHBB, GDF1,
LEFTY, NODAL, AMH, SMAD1, SMAD2, SMAD4, SMAD5, SMAD6, SMAD7,
ACVRL1, ACVR1, BMPR1A, ACVR1B, TGFBR1, BMPR1B, TGFBR2, ACVR2/2B,
AMHR2, BMPR2

[20–25, 107, 108]

Reproductive tract development TGFBR1, AMH, AMHR2, ACVR1, BMPR1A, SMAD1/5/8, SMAD4 [29, 30, 109, 110]
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Bmp7 induces implantation defects and dysregulation of
decidual genes including Bmp2, Ptgs2, Wnt4, and epire-
gulin (Ereg) [52]. However, Bmp7 cKO mice respond
normally to artificial decidualization stimuli [52]. Results
of in vitro culture studies using undifferentiated uterine
stromal cells from pregnant mice reinforce the role of
BMP2-WNT4 signaling in decidualization [53]. In con-
trast to BMPs, the role of activins in uterine decidualiza-
tion in mice remains elusive. However, a recent study
has shown that follistatin (FST), an antagonist of activin,
is required for blastocyst implantation and normal uter-
ine decidualization [54].
NODAL, a key regulator of embryogenesis, is impli-

cated in several pregnancy-associated events, including
implantation of blastocyst and uterine decidualization
[55]. Deletion of Nodal in the mouse uterus using Pgr-
Cre leads to fertility defects, accompanied by fetal loss
and preterm birth due to intrauterine growth restriction
and malformation of the decidua basalis [56]. Of note,
the NODAL antagonist, LEFTY, appears to inhibit uter-
ine decidualization. Artificial decidualization of mice
promotes the expression of LEFTY [57]. However, over-
expression of LEFTY in the uteri of pregnant mice com-
promises artificial decidualization [58].

Receptors
The function of TGFβ superfamily signaling receptors in
uterine decidualization is poorly understood, due in part
to the promiscuity and redundancy of the receptor sig-
naling. The application of Cre-LoxP approach to circum-
vent embryonic lethality of the receptor null mice
greatly facilitates the dissection of the functional roles of
TGFβ receptor signaling in the uterus.
BMPs generally signal through activin A receptor type

1 (ACVR1, also known as ALK2), BMP receptor type 1A
(BMPR1A, known as ALK3), BMPR1B (known as
ALK6), and BMP type 2 receptor (BMPR2). Conditional
ablation of ACVR1 in the mouse uterus causes infertility,
with delayed embryo invasion into the endometrium and
defective implantation [59]. Expression of uterine stro-
mal cell differentiation markers including Prl8a2 and
Prl3c1 and the activity of alkaline phosphatase (ALP) are
reduced in Acvr1 cKO mice. Gene profiling using artifi-
cially decidualized uterine tissues identified CEBPB as a
critical BMP downstream target [59]. Conditional dele-
tion of Bmpr1a in the uteri of mice using Pgr-Cre leads
to sterility [60]. Bmpr1a Pgr-Cre cKO mice manifest de-
fective implantation and decidualization, with reduced
expression of implantation-associated genes such as
Cox2 and Wnt4. Enhanced E2 signaling is evident in
Bmpr1a Pgr-Cre cKO mice, where the expression levels
of ER and its downstream signaling targets are higher
than for controls [60]. Thus, BMPR1A-mediated signal-
ing is critical for implantation and decidualization in

mice. In contrast, conditional deletion of Bmpr1a using
Amhr2-Cre leads to subfertility and a prolonged dies-
trous phase, without compromising decidualization [61].
Since Amhr2-Cre does not delete genes in uterine epi-
thelia compared with Pgr-Cre, this finding suggests a po-
tential involvement of epithelial BMPR1A in uterine
decidualization. Knocking out of Bmpr1b results in in-
fertility, accompanied by impaired cumulus expansion
and uterine gland formation [62]. The uterine function
of the type 2 receptor for BMPs, BMPR2, has been in-
vestigated via the creation of Bmpr2 cKO mice using
Pgr-Cre [63]. Bmpr2 cKO mice are sterile, with intra-
uterine growth retardation and hemorrhaging observed
in developing conceptuses (embryo/fetus and placenta)
[63]. Unlike Bmpr1a Pgr-Cre cKO mice, the uteri of
Bmpr2 cKO mice are able to decidualize, although to a
lesser extent than controls [63]. Interestingly, the num-
ber of uNK cells is substantially reduced in the decidua
basalis of pregnant Bmpr2 cKO mice [63]. Findings from
Bmpr2 cKO mice indicate that BMPR2-meidated signal-
ing is not fully responsible for uterine decidualization.
In contrast to the reproductive phenotypes manifested

by the aforementioned BMP signaling related mouse
models, conditional ablation of TGFβ receptor 1
(TGFBR1, known as ALK5) leads to prominent defects
in the female reproductive tract [29]. While the forma-
tion of myometrial layers is disrupted in Tgfbr1 Amhr2-
Cre cKO mice, uterine decidualization can be induced
artificially [29]. In contrast, Tgfbr1 Pgr-Cre cKO mice
display defects in multiple pregnancy-related events in-
cluding implantation, development of trophoblast cells,
recruitment of uNKs, and uterine vascularization [64].
Of note, artificial decidualization occurs despite im-
paired recruitment of uNKs to the decidua and dysregu-
lated expression of NK cell associated genes such as
interleukin 15 (Il-15) [64].
Both activin A receptor type 1B (ACVR1B, known as

ALK4) and ACVR1C (known as ALK7) mediate NODAL
signaling that is essential for pregnancy [55, 65]. Abla-
tion of ACVR1B in the uterus using Pgr-Cre results in
defects in female fertility and placental development
[66]. However, implantation and decidualization do not
seem to be affected in these mice [66]. The role of
ACVR1C in uterine decidualization has not been re-
ported. The primary mouse models created to study the
role of TGFβ signaling in uterine function are summa-
rized in Table 2.

SMADs
SMADs are intracellular mediators of canonical TGFβ
signaling. Recent studies begin to facilitate understand-
ing of the role of SMAD proteins in the uterus. Artificial
decidualization is moderately impaired in Smad3 null
mice [67]. A potential overlapping function between
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SMAD2 and SMAD3 in decidualization has been
revealed; in vitro knockdown of Smad2 using an siRNA
approach reduces expression of prolactin-related protein
in Smad3−/− decidual cells [67]. As a central mediator of
the canonical TGFβ signaling pathway, SMAD4 trans-
duces signals of both TGFβ/activin and BMP family
members. However, the role of SMAD4 in the uterus
remains elusive. Uterine specific ablation of SMAD4 is
expected to provide insight into its role. The role of
BMP-associated SMADs in the uterus has been investi-
gated. Conditional deletion of Smad1 and Smad5 using
Amhr2-Cre causes fertility defects and the development
of ovarian granulosa cell tumors, with no uterine pheno-
type reported [68]. Interestingly, triple deletion of
Smad1, Smad5, and Smad4 using the same Cre leads to
defects in oviductal and myometrial development and
blastocyst implantation [69]. Furthermore, expression of
genes associated with oviductal development and cell
differentiation is impaired in Smad1/5/4 Amhr2-Cre
cKO mice [69]. Smad1/5/4 Amhr2-Cre cKO mice also
show partially compromised decidualization, which may
be caused by dysregulation of decidualization-associated
genes such as Bmp2, Wnt4, and Ptgs2 [69]. These
studies suggest a complex role of SMAD signaling in
uterine decidualization.

Evidence from human studies
Supporting a role for TGFβ signaling in uterine decidua-
lization in humans, the expression of a number of TGFβ
family ligands including BMP2, BMP4, BMP7, GDF5,
GDF8, and GDF11 is detectable in the secretory phase
human endometrium and cultured human ESCs [70].
Decidual cells also express BMP2, GDF5, and TGFβ1
[70]. Although it has been long studied, the functional

role of TGFβ1 in human decidualization remains contro-
versial. It has been shown that TGFβ1 reduces the
expression of PRL, IGFBP-1, and tissue factor (TF) in
human ESCs, suggesting an inhibitory role of TGFβ1 in
decidualization [71]. Further studies revealed the
involvement of SMAD-dependent and SMAD-
independent pathways in TGFβ1 inhibition of PRL and
IGFBP-1 expression, respectively [71]. Moreover, TGFβ1
inhibits the expression of PGR and WNT antagonist
Dickkopf-1 (DKK) in differentiated ESCs via the respect-
ive SMAD-dependent and SMAD-independent mecha-
nisms [72]. In contrast to the inhibitory role of TGFβ1
in decidualization, other investigators have demonstrated
that the secretion of TGFβ1 increases during in vitro
decidualization of human ESCs, and that recombinant
TGFβ1 promotes the decidualization process [70, 73,
74]. The reason for the contradictory effects of TGFβ1
on ESC decidualization is not known, but may be associ-
ated with differences in experimental conditions utilized
in different studies.
Strong evidence supports the implication of BMP

signaling in human ESC decidualization. The aforemen-
tioned role of BMP2 in uterine decidualization in mice
has been reinforced by studies using in vitro cultured
human ESCs, where secretion of BMP2 is increased
during decidualization and recombinant BMP2 protein
stimulates the decidual response [70]. A similar BMP2-
WNT4 signaling mechanism may operate during decid-
ualization in human and mouse ESCs [53]; downregula-
tion of WNT4 hampers BMP2-induced differentiation
while overexpression of WNT4 promotes cell differenti-
ation [75]. The receptors that mediate BMP2 signaling
during ESC decidualization have not been well defined.
However, knockdown of expression of the BMP type 1

Table 2 Mouse models to study TGFβ superfamily signaling in uterine function

Mouse model Phenotype Reference

Tgfbr1 Amhr2-Cre cKO Disrupted myometrial formation with occurrence of artificial decidualization [29]

Tgfbr1 Pgr-Cre cKO Defective placentation, impaired recruitment of uNK cells, with occurrence of artificial decidualization [64]

Bmp2 Pgr-Cre cKO Infertility with loss of decidualization [41]

Bmp7 Pgr-Cre cKO Defective implantation with normal response to artificial decidualization stimuli [52]

Fst Pgr-Cre cKO Defective uterine receptivity and decidualization [54]

Nodal Pgr-Cre cKO Malformation of decidua basalis with fetal loss and preterm birth [56]

Acvr1 Pgr-Cre cKO Infertility with defective implantation and decidualization [59]

Acvr1b Pgr-Cre cKO Defective placental development but normal occurrence of implantation and decidualization [66]

Bmpr1a Pgr-Cre cKO Impaired implantation and decidualization [60]

Bmpr1a Amhr2-Cre cKO Subfertility with prolonged diestrous phase and occurrence of decidualization [61]

Bmpr1b KO Infertility, impaired expansion of cumulus cells of oocytes and uterine gland formation [62]

Bmpr2 Pgr-Cre cKO Infertility, defective decidual vascularization and decidualization [63]

Smad3 KO Impaired artificial decidualization [67]

Smad1/5/4 Amhr2-Cre cKO Defective oviductal and myometrial development, impaired implantation and decidualization [69]
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receptor, ACVR1, in human ESCs impairs the expression
of decidualization markers [59]. Further experiments
using chromatin immunoprecipitation revealed the
importance of the BMP-ACVR1-SMAD1/5-CEBPB-PGR
signaling axis in human ESC decidualization [59]. Unlike
BMP2, BMP7 reduces E2/P4-induced expression of
IGFBP1 mRNA in human ESCs in culture, suggesting an
inhibitory role of BMP7 in ESC decidualization [76].
This finding seems to contradict results from the mouse
model in which loss of BMP7 affects decidual gene ex-
pression [52]. Expression analysis has shown that the
levels of BMPR1A, BMPR1B and BMPR2 are lower in
leiomyoma-associated endometrium that secretes high
levels of TGFβ3 versus normal endometrium [77].
Furthermore, treatment of ESCs with TGFβ3 reduces
the expression of BMP receptors, suggesting that TGFβ
signaling may be intertwined with BMP signaling in
regulating functions of uterine decidual cells [77].
Further experiments are needed to determine poten-
tial interactions between TGFβs and BMPs during
uterine decidualization.
There is also considerable evidence for the involve-

ment of activins in human decidualization [78]. Acti-
vin receptors in the stromal and endothelial cells of
human endometria are highly expressed during the
early secretory phase of the menstrual cycle and early
pregnancy [79]. Furthermore, activin A dose-
dependently increases the production of PRL, and the
effect can be attenuated by follistatin in decidualizing
ESCs [80]. In combination with the fact that decidual
cells secrete dimeric activin A, these findings point to
an autocrine/paracrine action of activin A in human
decidualization [80]. Furthermore, a potential link
between activin A and the production of matrix me-
talloproteinases and IL11 in the mechanism of decid-
ualization has been suggested [81, 82]. In addition,
concentrations of activin B in serum are lower in
ectopic pregnancies containing less decidualized
stroma versus intrauterine pregnancies; and deciduali-
zation of uterine stromal cells is accompanied by
upregulation of expression of inhibin/activin beta-B
[83]. Thus, both activins A and B are plausible regu-
lators of decidualization in human ESCs.
Consistent with the inhibitory role of LEFTY in uter-

ine decidualization in mice, overexpression of LEFTY1
in human ESCs impairs their secretion of PRL and
IGFBP1 [84]. Studies using human uterine fibroblast
cells also support an inhibitory function of LEFTY in
uterine decidualization, with the involvement of key
transcription factors, FOXO1 and ETS proto-oncogene
1 (ETS1) [58]. These findings led to the suggestion that
LEFTY may serve as a molecular switch controlling stro-
mal cell differentiation and decidual reprogramming
during early pregnancy [58].

Conclusion and future directions
The application of Cre-LoxP technology has accelerated
the generation of new knowledge and understanding of
the functions of TGFβ signaling in decidualization, a key
event associated with implantation and development of
blastocysts/conceptuses (Fig. 1b). Despite that advance-
ment in knowledge, the functional signaling circuitries
among ligands, receptors, and SMADs remain to be elu-
cidated. Future studies are warranted to not only define
the signaling landscape, but also unravel the functional
interactions among TGFβ signaling circuitries. For
instance, it has been reported that PI3K/AKT, ERK, and
JNK are regulators of decidualization [85–88] and some
studies have suggested that PI3K/AKT signaling activ-
ities are downregulated during decidualization [87, 88].
Little is known about the role of TGFβ-activated kinase
1 (TAK1) in uterine decidualization. It is also not clear
whether those non-canonical TGFβ signaling elements
are also activated by TGFβ superfamily proteins in the
context of uterine decidualization (Fig. 1b). If so, how
are their functions orchestrated to fulfill the program of
differentiation of endometrial cells? In addition, it
remains challenging to delineate the functional ligands-
receptor-SMAD/non-SMAD pathways and signaling
crosstalk on the roadmap to decidualization.
Non-coding RNAs and epigenetic modifications are

emerging regulators of uterine decidualization. MicroRNAs
(miRNAs), non-coding RNAs that are ~22 nt long
transcript, play important roles in post-transcriptional gene
regulation [89]. Recent findings point to a likely role for
non-coding RNAs in blastocyst implantation, uterine
development, decidualization, and myometrial function
[90–93]. For example, the levels of miR-542-3p are lower in
decidualizing versus normal human ESCs, and overexpres-
sion of miR-542-3p inhibits the expression of IGFBP1, PRL,
and WNT4, suggesting an inhibitory role of miR-542-3p in
decidualization [94]. It has also been reported that miR-
181b-5p regulates the expression of cell migration associ-
ated proteins during decidualization [95]. Although TGFβ
signaling regulates miRNA biosynthesis/expression [96–98],
little is known about interactions between TGFβ signaling
and miRNAs in the regulation of decidualization. Future
efforts are needed to gain a comprehensive understand-
ing of the role of TGFβ-associated non-coding RNAs in
uterine decidualization.
DNA/histone methylation appears to be involved in

uterine decidualization. DNA methylation at cytosines
represents a common epigenetic modification of genes.
Our understanding of DNA methylation in decidualiza-
tion is just beginning [99]. Recent studies have shown
that DNA methyltransferase 1 (Dnmt1) and Dnmt3a are
expressed in mouse ESCs during early pregnancy [100].
Treatment of mice with the DNA methyltransferase
inhibitor 5-aza-2-deoxycytodine (5-aza-dC) during the
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peri- or postimplantation period impairs uterine decid-
ualization [100]. Histone methylation, an important
post-translational modification, adds methyl groups to
specific amino acids of histones. Enhancer of zeste
homolog 2 (EZH2), a histone methyltransferase,
represses gene transcription by tri-methylation of lysine
27 on H3 histones (H3K27me3) [101]. The expression of
EZH2 mRNA and protein is reduced in cultured human
decidualizing cells induced by 8-bromo-cAMP and/or
medroxyprogesterone acetate (MPA), as is associated
with loss of H3K27me3 in the proximal promoters of
PRL and IGFBP1 [102]. Meanwhile, a transcriptionally
permissive chromatin seems to be established due to the
loss of H3K27me3 and enrichment in acetylation of
H3K27 [102]. The outcome of such a chromatic remod-
eling is the phenotypic switch of ESCs from proliferation
to decidualization [102]. As further evidence, chromo-
box 4 (CBX4)/ring finger protein 2 (RNF2/Ring1B) con-
taining polycomb repressive complex 1 (PRC1) is an
important regulator of decidualization in mice [103]. Of
note, TGFβ superfamily members regulate EZH2 expres-
sion [104]. Therefore, it is imperative to determine
whether TGFβ signaling and epigenetic programming
are linked to event responsible for uterine decidualiza-
tion during pregnancy.
In summary, further understanding TGFβ superfamily

signaling associated cellular, molecular, and epigenetic
mechanisms underlying decidualization is needed. In
particular, deciphering the interrelationship among
TGFβ signaling circuitries and their potential interac-
tions with epigenetic modifications/non-coding RNAs
may prove useful in developing novel therapeutic strat-
egies for the treatment of uterine disorders associated
with deficiencies in decidualization.
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