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Abstract

Having demonstrated that the bradykinin B2 receptor (B2R) is expressed in cells that participate in trophoblast
invasion in humans and guinea-pigs, we investigated the role of bradykinin (BK) on cell migration and invasion in
the HTR-8/SVneo trophoblast cell line using wound healing and invasion assays. First, we documented that HTR-8/
SVneo cells expressed kallikrein, B2R, B1R, MMP-2 and MMP-9 using immunocytochemistry. Incubation with BK (10.0
microMol/L) for 18 hours increased the migration index 3-fold in comparison to controls or to cells preincubated

with the B2R antagonist HOE-140. BK (10.0 microMol/L) incubation yielded a similar number of proliferating and
viable cells as controls, therefore the enhanced closure of the wound cannot be attributed to proliferating cells.
Incubation with BK (10.0 microMol/L) for 18 hours increased the invasion index 2-fold in comparison to controls or
to cells preincubated with the antagonist of the B2R. Neither the B1R ligand Lys-des-Arg9 BK, nor its antagonist
Lys-(des-Arg9-Leu8), modified migration and invasion. Further support for the stimulatory effect of B2R activation
on migration and invasion is provided by the 3-fold increase in the number of filopodia per cell versus controls or
cells preincubated with the B2R antagonist. Bradykinin had no effect on the cellular protein content of the B2R, nor
the MMP-9 and MMP-2 gelatinase activity in the culture media varied after incubation with BK. This study adds
bradykinin-acting on the B2R-to the stimuli of trophoblast migration and invasion, an effect that should be
integrated to other modifications of the kallikrein-kinin system in normal and pathological pregnancies.

Background
In humans, the invasion of maternal decidua and uterine
spiral arteries by the extravillous trophoblast (EVT) is
essential for the establishment of a normal placenta and
adequate blood flow to the fetus. On the maternal side,
EVT invasion is initiated when cytotrophoblasts anchor
the budding placental villi to the uterine wall; in a
second stage, EVTs detach and migrate across the endo-
metrium, transform the arteries, and finally settle in
their lumen [1-3]. Simultaneously, on the fetal side, vil-
lous cytotrophoblasts establish a richly branching tree
that provides the extensive surface in which fetal and
maternal blood exchange nutrients and waste products.
Dysregulation of trophoblast invasion is associated
with various pathologies, such as intrauterine growth
retardation, preterm birth, placenta accreta and the pre-
eclampsia syndrome, its foremost clinical manifestation
[4-7]; all these complications increase maternal and fetal
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morbidity and mortality. Over the years proteolytic,
adhesive, growth promoting, inflammatory and angio-
genic molecules that modulate trophoblast migration
and invasion have been identified, and localized in
trophoblasts, maternal epithelial and stromal cells, uter-
ine NK cells and macrophages [8-13]. The list of factors
controlling trophoblast invasion in normal placentation
is continuously expanding, but despite intensive
research, our understanding of normal and pathological
processes remains limited.

It has been postulated that nitric oxide (NO) regulates
trophoblast invasion by priming the maternal blood ves-
sels [1,14]. We have hypothesized that NO integrates a
network of vasodilator systems including the kallikrein-
kinin system (KKS), which includes serine proteases,
and tissue and plasma kallikrein (Kal), that generate
kallidin and bradykinin from low and high molecular
kininogen, respectively [15]. The upregulation of Kal
and endothelial nitric oxide synthase (eNOS) in placenta
accreta, a condition of exaggerated trophoblast invasion,
suggested that vasodilators facilitate trophoblast migra-
tion [16]. However, the tissue KKS, initially considered a
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vasoactive system, is now known to have pleiotropic
effects which deserve to be studied in pregnancy.

Bradykinin (BK)-related peptides activate G-protein
coupled receptors, the bradykinin type 1 and type 2
receptors (B1R and B2R) [17,18]. B1Rs are inducible,
and their natural agonist lacks the C-terminal Arg resi-
due of BK; they cause chronic inflammation, pain, hypo-
tension and proliferation of tumoral cells. They are
exceptionally constitutive in the central nervous system,
and information on their actions is derived from phar-
macological studies. B2Rs are constitutive, require the
full peptide chain and activate endothelial cells leading
to vasodilatation, increased vascular permeability, pro-
duction of NO, and mobilization of arachidonic acid.
They are localized in endothelial cells, smooth muscle,
fibroblasts, mesangial cells, neurons, astrocytes, and
polynuclear neutrophils. In reproductive tissues the B2R
has been documented in decidua, placental and extravil-
lous trophoblasts, and in the fetal endothelium in
humans, rats and guinea-pigs [19-23].

Bradykinin stimulates cell migration, a critical process
in placentation, embryogenesis, wound healing, immune
response, tissue development, vascular disease and can-
cer [24-27]. BK increases migration of endothelial cells
[28], endothelial progenitor cells [29], neutrophils
[30,31], lymphocytes [32], fibroblasts [33], dendritic cells
[34], microglia [35], and cancer cells [36-38]. Interest-
ingly, BK has been found to induce the formation of
peripheral actin microspikes, filopodia and lamellipodia
in fibroblasts and endothelial progenitor cells, indicating
its relevance in determining an invasive phenotype [33].
Whether the effects are mediated by the BIR or the
B2R depends on the different cell types.

In addition, activation of the BK receptors stimulates
metalloproteinases, key molecules in trophoblast inva-
sion. In rat, astroglial cell line activation of the B2R
modulates MMP-9 gene expression and cell migration
by phosphorylating and translocating the protein kinase-
delta-dependent extracellular kinasel/2, which in turn
activates its downstream factor Elk-1 [39]. On the other
hand, BIR stimulation induces release of MMP-2 and
MMP-9 via an ERK-dependent pathway in estrogen-sen-
sitive and-insensitive breast cancer cells [37].

The aim of the present study was to evaluate the effect
of bradykinin on the migratory and invasive capacity of
HTR-8/SVneo cells, an immortalized line of first trimester
extravillous trophoblast, which constitutes a valid model
for extravillous trophoblasts [40-43]. First, we confirmed
the main components of the KKS in these cells. We identi-
fied the B2R as the receptor involved in the BK-stimulated
migratory and invasive capacity of these cells. Lastly, we
demonstrated that BK induced filopodias, a characteristic
conformation of the cytoskeleton in migrating cells.
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Methods

HTR-8/SVneo cell culture

HTR-8/SVneo trophoblast cells were kindly donated by
C.H. Graham, Queen’s University, Kingston, Canada.
The cells were obtained from first trimester human
placenta (8-10 wk gestation) and immortalized by
transfection with a cDNA construct that encodes the
simian virus 40 large T antigen. Though nontumori-
genic and nonmetastatic, the cells are highly invasive
in vitro and exhibit phenotypic properties of extravil-
lous cytotrophoblasts, including the expression of cyto-
keratins 7, 8, and 18, placental alkaline phosphatase,
urokinase-type PAR, human leukocyte antigen (HLA)
framework antigen W6/32, IGF-II mRNA and protein,
and the integrin profile characteristic of invasive cyto-
trophoblasts [42]. When plated on Matrigel these cells
express HLA-G [44].

Cells were cultured as described [40,41]. Briefly, cells
were grown in RPMI 1640 (Sigma-Aldrich) supplemen-
ted with 10% FBS (Gibco) and 50 pg/ml gentamicin
(Gibco) in a humidified atmosphere of 95% air and 5%
CO2 at 37°C. Cells at passage 6-25 were used to per-
form all the experiments.

Immunocytochemistry

Immunocytochemistry was performed for kininogen,
Kal, BIR, B2R, MMP-2, MMP-9, cytokeratin and Ki67.
The dilution and origin of the antibodies were: anti-kini-
nogen (1:500, Boehringer); anti-Kal (1:2,000, produced in
our laboratory [45]); anti-B1R (1:1,000, Santa Cruz Bio-
technology), and anti-B2R mouse monoclonal (1:4,000,
BD Transduction Laboratories); anti-MMP-2 and anti-
MMP-9 (1:20 and 1:200 respectively, Calbiochem mouse
mAb, USA); anti-pancytokeratin mouse monoclonal,
(1:100, Sigma-Aldrich) and anti-Ki67 mouse monoclonal
(1:50, BioGenex).

Cells were seeded at a density of 80,000 cells/well on
cover slides in 24-well plates (Nucleon Surface, Nunc),
in RPMI 1640, supplemented with 1% FBS, 50 pug/ml
gentamicin in a humidified atmosphere of 95% air and
5% CO, at 37°C. After 18 hours, cells were rinsed 3
times with cold PBS and fixed with methanol at -20°C
for 20 minutes, equilibrated 3 times with 50 mMol/L
TRIS-HCI PBS buffer pH 7.8 and incubated with 10%
H,O, for 5 minutes to block endogenous peroxidases.
Cells were incubated with protein block (Cas-Block,
Zymed Laboratories) for 30 minutes in a humidified
chamber, and incubated with the respective antibodies
at the aforementioned concentrations for 18 hours at 4°
C. Cells were immunostained with the biotin-streptavi-
din peroxidase system (Dako LSAB+System-HRP), incu-
bated with 0.1% of 3-3’-diaminobenzidine (Sigma-
Aldrich) in the presence of 0.05% H,O, for 15 minutes,
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stained with Harris Haematoxylin (Sigma-Aldrich) and
finally mounted with glycerin-gelatin (Kaisers, Merck).

To determine whether kininogen-the substrate from
which kallikrein generates bradykinin-is an inherent or a
trapped molecule, cells were incubated with or without
serum for 24-hours. The specificity of the staining was
determined by incubating sections in the absence of the
first antibody, or in the presence of rabbit IgG fraction
(1:50 to 1:1000) and mouse IgG serum (1:50 to 1:1,000,
both from Dako Cytomation), depending on the species
in which the antibodies were generated.

Western blot analysis

Total proteins from HTR-8/SVneo cells were extracted
using 20 mM Tris-HCI buffer containing 10 mM EDTA,
2 mM phenylmethylsulfonylfluoride, 5 uM leupeptin, 50
pg/ml soybean trypsin inhibitor and 0.02% NaN3 at pH
7.4. Lysed cells were left for 20 minutes on ice, centri-
fuged at 14,000 rpm for 20 minutes at 4°C and finally
stored at -70°C. Protein content was determined accord-
ing to the Lowry method.

Western blot for the B2R was performed as previously
described [46]. Equal amounts of protein (100 pg/lane)
were separated using 10% SDS-PAGE under reducing
conditions and transferred to nitrocellulose membranes
(Biorad, Hercules, CA), blocked with 5% nonfat dry milk
in PBS-0.1% Tween-20 buffer (PBS-T) and incubated
overnight at 4°C with the same primary antibody used
in immunohistochemistry: anti-B2R mouse monoclonal
(1:1000, BD Transduction Laboratories, USA) diluted in
blocking buffer. The membranes were washed six times
for five minutes in PBS-T buffer, incubated with HRP-
conjugated anti-mouse or anti-rabbit secondary antibo-
dies (both 1:3000, Biorad, Hercules, CA) for one hour at
room temperature and developed with chemilumines-
cence reagent (NEL-103, Western Lighting, Perkin-
Elmer, MA) [30]. Membranes were exposed to CLxPo-
sure film (Pierce, Rockford, IL). Equal protein loading
was confirmed with Ponceau-S red staining (Sigma, St.
Louis, MO). Images were scanned at 16-bit/600 dpi
resolution with an Epson Perfection 3490 scanner
(Epson Corporation, CA), saved as tiff files and cali-
brated to an optical density scale. The integrated optical
density of bands was quantitated using the Image] v.1.34
software. The optical densities were expressed as the
ratio of treatment/control.

Proliferation and viability assays

Cells were seeded at a density of 80,000 cells/well on
cover slides in 24-well plates and incubated for 18 hours
in medium 1% FBS with and without 10.0 pMol/L BK
(Sigma-Aldrich). Immunocytochemistry was performed
as previously described using antibody to Ki67, a nuclear
protein expressed in the active phases of the cell cycle.
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The proliferation index was represented by the percen-
tage of cells with positive staining within total cells; the
proliferation ratio represented the proliferation index of
the treated/untreated cells in each experiment.

In addition, cell viability was evaluated using the MTS
assay (Promega). Cells were placed in complete medium
at a concentration of 15,000 cells/well in 96-well plates
for 24 hours. To determine the effect of BK 10.0 pmol/L
at different periods (0, 6, 18, 24 hours) cells were
incubated in reduced serum with 1% FBS; the release of
formazan was read after 2 hours of incubation with the
MTS substrate at 495 nm by spectrophotometry
(Multiskan EX, LabSystem).

All experiments were performed in triplicate and
repeated at least three times.

Migration assay

Cell migration was studied using the wound-healing
assay under the effect of bradykinin, the BIR agonist
[Lys-des-Argg] bradykinin (LDBK) and the BIR or/and
B2R antagonists. HTR-8/SVneo cells (100,000) were
seeded in each well on cover slides in 24-well plates
containing 500 pl complete medium for 24 hours. Cells
were then washed 3 times with PBS and the wound was
generated by removing cells in the center of the well
with a sterile pipette tip; the unattached cells were
washed away with PBS. The experiments were per-
formed in reduced serum (1% FBS). Initially incubations
in the different experimental conditions were carried
out for 6, 18 and 24 hours. We then incubated for 18
hours, time in which maximal differences among treat-
ments were observed. Cell migration was studied under
the effect of 10.0 uMol/L of bradykinin and of 10.0
uMol/L of the BIR agonist LDBK. In addition cells were
preincubated for 30 minutes with BIR or/and B2R
antagonists: 10.0 pMol/L of Lys-(des-Arg’-Leu®)
bradykinin (AB1R) and 10.0 umol/L of D-Arg-Arg-Pro-
Hyp-Gly-Thi-Ser-D-Tic-Oic (HOE-140, Sigma-Aldrich),
and then incubated with their respective ligand for 18
hours in all assays.

The migration assay was performed 4 times in dupli-
cate. Three images were obtained along the wound with
a Nikon TMS inverted microscope connected to a
Nikon CoolPix 4500 camera and quantified using Image]J
v.1.34 software. The migration index was defined as cells
migrating in response to each study condition divided
by cells migrating in response to medium alone [43].

Invasion assay

Briefly, transwell inserts containing membranes with 8
pm pore size (Nunc) were coated with matrigel (BD
Biosciences) as per the manufacturer’s instructions.
Cells (30,000) were spread over the matrigel (1:10) in
200 pl of medium with reduced serum (1% FBS), and
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800 pl of culture medium was added to the lower cham-
ber. Cell invasion was studied under the effect of BK, of
BK plus two B2R antagonists-HOE-140 and the non-
peptide antagonist bradyzide (BDZ, Sigma)-and finally
with the B1R agonist LDBK plus its antagonist AB1R;
BK, agonists and antagonists were all used at 10.0
uMol/L. The cells were preincubated with the antago-
nists for 30 minutes and then with their respective
ligands for 18 hours. Bradykinin, the BIR agonist, and
the antagonists were added on the upper and lower
chambers of the invasion well.

For assessing the number of invaded cells, the filters
were stained with anti-cytokeratin antibody and haema-
toxylin and mounted on cover slides with Kaiser’s, gly-
cerin-gelatin (Merck). Each experiment was performed
in duplicate and was repeated 4 times. The inserts were
examined by a blinded observer with an AX.10 micro-
scope (Carl Zeiss) attached to a Nikon CoolPix 4500
camera; 20 photographs, were obtained per insert, and
the number of cells in the underside of the filter was
counted. Results are expressed as invasion index, where
the level of invasion was defined as cells invading in
response to BK divided by cells invading in response to
medium alone [43].

Gelatin zymography

Gelatinase activity was detected by zymography using
methods described previously, with some modifications
[46]. Cells were seeded at a density of 100,000 on plates
in complete medium and incubated until 70% con-
fluency was achieved; cells were further incubated in
medium with reduced serum (1% FBS) for 24 h. BK was
then added for 18 h. Aliquots from conditioned medium
were resolved under non-reducing conditions in a 10%
polyacrylamide gel containing 1.0 mg/ml gelatin (por-
cine skin, 300-bloom, Sigma, St. Louis, MO). After elec-
trophoresis, the gels were washed twice at room
temperature for 30 minutes in 2.5% Triton X-100, sub-
sequently washed in buffer containing 50 mM Tris-HCl,
150 mM NaCl, 5 mM CaCl,, 1 pM ZnCl,, 0.05% Brij-
35, 0.02% NaN3 at pH 7.5 and incubated in this buffer
at 37°C for 24 hours. Thereafter, the gels were stained
with 0.5% (w/v) Coomassie brilliant blue R-250 (Sigma-
Aldrich) for 30 minutes, lightly destained in methanol:
acetic acid:water (3:1:6) and finally stored in 5% acetic
acid. Identification of each gelatinase band was done in
accordance to the molecular weight, using purified
human recombinant pro-MMP-2 and pro-MMP-9 (Cal-
biochem, USA) as standard (0.5 ng). Gels were scanned
in the transmissive mode at 16-bit color/600 dpi (Epson
Perfection 3490, Epson, CA) and stored in tiff format.
Images were processed extracting the blue channel sig-
nal, converted to black and white and inverted for
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quantitation of the integrated optical density of gelatino-
lytic activities using the Image] v.1.34 software.

Fluorescence Studies

Immunofluorescence was performed for B2R. Cells were
seeded at a concentration of 80,000 cells/well on cover
slides in 24-well plates for 24 hours and washed 3 times
with cold PBS and fixed with methanol at -20°C for 20
minutes. Then washed with buffer PBS and incubated
with protein block (Cas-Block, Zymed Laboratories,
USA) serum free for 30 minutes in a humidified cham-
ber. Cells were incubated with anti-B2R (anti-B2R
1:1000) overnight. Cells were washed twice for 5 min-
utes with PBS/Tween 20 0.1% and PBS, and incubated
for 2 hours with anti-mouse-Rhodamine (PBS/1%, BSA)
(1:40) (Pierce, USA). The nuclei were stained with DAPI
(Pierce, USA) and the sections were mounted with Vec-
tashield (Vector Laboratories, Inc, USA). Microphoto-
graphs were obtained with an AX.10 microscope (Carl
Zeiss) attached to a Nikon CoolPix 4500 camera
adapted with an epi-ilumination mercury lamp (MBO
100, Leistungselektronik JENA GmbH).

The identification of morphological changes in the
actin cytoskeleton was performed using FITC-conju-
gated phalloidin (Molecular Probes). Briefly, 10,000 cells
were seeded on coverslips, and incubated with culture
medium with BK (10.0 uMol/L), BK plus preincubation
with HOE-140 (10.0 uMol/L) and control conditions for
18 hours. The cells were rinsed with PBS and fixed in
4% paraformaldehyde in PBS for 15 minutes at room
temperature. To quench the excess of aldehyde, 0.1 M
glycine in PBS was added for 5 minutes. Cells were per-
meabilized with 0.1% Triton-X100 in PBS for 1 min and
incubated with FITC-labelled phalloidin (1:100) in PBS
for 15 minutes, finally cells were rinsed 3 times for 5
minutes in PBS, and mounted for microscopy with Vec-
tashield. As above, microphotographs were obtained
with an AX.10 microscope attached to a Nikon CoolPix
4500 camera adapted with an epi-ilumination mercury
lamp. A blinded observer counted the number of filopo-
dia connecting two cells in one 115-pm? rectangle per
coverslip in at least 10 images from each experiment.
The total number was then determined with Image]
software, version 134. In addition, images were comple-
mented by confocal laser scanning microscopy with an
Olympus FluoView 1000 (Olympus UK).

Statistical Analysis

Results are expressed as mean + SE. One-way analysis of
variance, followed by Tukey’s Multiple Comparison
post-hoc test, was used to test for differences between
the different interventions and study periods with SPSS
v10 (SPSS Inc.). A P < 0.05 was considered significant.
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Results
Immunocytochemical detection of kininogen, kallikrein,
the B1 and B2 receptors in HTR-8/SVneo cells
All cells expressed the components of the KKS (kallik-
rein, the B2R and the B1R), as well as MMP-2 and
MMP-9. The staining pattern for Kal, the B2R and
MMP-9 was diffuse, punctuate for BIR and granular for
MMP-2. Cells incubated in the presence of serum
expressed punctuate immunostaining for kininogen;
however no signal was obtained when cells were
deprived of serum for 24 hours. (Figure 1A). This find-
ing supports the view that in vivo endogenous bradyki-
nin likely derives from Kal acting on trapped circulating
kininogen.

All cells were cytokeratin positive. Negative controls
with cells incubated with mouse IgG serum and rabbit
IgG fraction yielded no staining. (Figure 1B).
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Effects of bradykinin and its antagonists on the migratory
capacity of HTR-8/SVneo cells
The migration observed after incubating with BK (10.0
uMol/L) for 6 hours was minimal and showed no differ-
ences among the experimental conditions. At 24 hours
wounds in all conditions were closed. However, observa-
tions at 18 hours showed that BK induced a 3-fold
increase in the migration index as compared to controls
(3.39 + 0.27 versus 1.00 + 0.04; P < 0.001; n = 4,
respectively), and was completely blocked with the B2R
antagonist HOE-140 (0.86 + 0.39; P < 0.001; n = 4) On
the other hand, incubation with the B1R agonist LDBK,
with or without preincubation with its antagonist ABIR,
had no effect on the migratory capacity of HTR-8/SVneo
cells. (Figure 2A and 2B).

We considered that wound healing was due to cell
migration, and not to proliferation, given that 10 uMol/L

Figure 1 Immunocytochemistry analysis. A. Expression of Kal, kininogen (in cells incubated with [KG+s] or without serum [KG-s]), the B1R, B2R

receptors, MMP-2 and MMP-9 in HTR-8/SVneo cells. B. Cells were cytokeratin (CK) positive. Negative controls with cells incubated with mouse

(M) IgG serum (1:50) and rabbit (R) IgG fraction (1:50). Bar = 100 um.
o
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Migration Index

Figure 2 Migration assay. A. Representative images obtained along the wound, at 0 and 18 hours of stimulation with BK, the B1R agonist
LDBK, and of preincubation with the antagonists of the B2 and the B1 receptors, HOE-140 and AB1R respectively (x 100). B. Effect of BK on the
migratory capacity of HTR-8/SVneo cells analyzed at 18 hours. Mean + SE; *p < 0.001 when comparing BK stimulation to control, and BK
stimulation with preincubation with the B2R antagonist HOE-140; incubation with the B1R agonist LDBK, with or without preincubation with its
antagonist AB1R did not modify cell migration. N = 4 for each condition. C. Representative immunofluorescence of the B2R, and of Western blot
of lyzed cells, both after 18 hours of incubation under control conditions and BK stimulation.
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BK for 18 hours did not change the proliferation ratio
between treated and untreated cells (1.06 + 0.03, n = 3).
No changes were observed in the content of the B2R at
18 hours, which yielded bands with a molecular weight of
approximately 42 kDa (Figure 2C). The absence of differ-
ences in cell proliferation, viable cells and expression of
the B2R between control conditions and BK stimulation
supports that bradykinin stimulation enhances migration
through its binding to the B2R.

Effects of bradykinin and its antagonists on the invasive
capacity of HTR-8/SVneo cells

Bradykinin (10 puMol/L) in the culture media of the
upper and the lower chambers of the invasion well
increased the invasion index by 2-fold at 18 hours as
compared to controls (2.50 + 0.44 vs.1.00 £ 0.3; P <
0.05; n = 6). This increase was totally abolished by

preincubation with B2R antagonist HOE-140 (0.72 +
0.05; P < 0.05; n = 3). Incubation with the BIR agonist
LDBK, in the absence or presence of its antagonist
ABIR for 30 minutes, had no effect on the invasive
capacity of the cells (Figure 3A and 3B).

Effect of bradykinin on the formation of filopodia

in HTR-8/SVneo cells

In areas connecting two cells, BK (10.0 uMol/L) induced
a 3-fold increase in the number of filopodia at 18 hours
as compared to controls (20.4 + 0.8 vs. 6.47 + 0.4; P <
0.001; n = 3). This effect was abolished when the cells
were preincubated with the B2R antagonist HOE-140
(8.3 £ 0.8; P < 0.001, n = 3) (Figure 4A and 4B). This
finding confirms the effect of the B2R on the modifica-
tions of the actin cytoskeleton that contribute to
migration.
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Figure 3 Invasion assay. A. Representative images of invaded inserts showing the effect of BK, the B1R agonist LDBK, and of preincubation
with the antagonists of the B2 and B1 receptors, HOE-140/BDZ and AB1R respectively, on the invasive capacity at 18 hours, evaluated by the
number of cells focussed on the underside of the filter. Blurry cells correspond to non-invading cells in the upper surface of the filter. B. Effect of

BK and LDBK on the invasive capacity of HTR-8/SVneo cells analyzed at 18 hours, with and without preincubation with the B2R antagonists
(HOE-140/BDZ] and the AB1R. N = 4 for each condition. Mean + SE; *p < 0.05 vs. control and HOE-140. Bar = 100 um.

Effect of bradykinin on the release of MMP-2 and MMP-9
The gelatinase activity of MMP-9 and MMP-2 in the
culture media showed no variation when incubated with
BK for different periods (2 minutes, 2, 4, 6, 18, 24 and
48 hours), or concentrations (1.0, 10.0 and 100 pMol/L).
Figure 5 depicts the gelatinase activity of 3 experiments
after 18 hours of incubation in control conditions (C) or
under stimulation with BK 10 pMol/L.

Discussion

To our knowledge, this is the first report demonstrating
an action of bradykinin on trophoblast migration and
invasion, effects which can be attributed solely to activa-
tion of the B2R. In addition, this study adds kallikrein

and the B2 receptor to the many factors shared by the
human trophoblast and HTR-8/SVneo cells, underscor-
ing their similarities. Though the promigratory and
proinvasive effects of B2R stimulation were observed in
immortalized HTR-8/SVneo trophoblasts, which are not
genetically identical to primary CTB or EVT [47], and
further studies are needed in human trophoblasts, the
expression of the B2R in human extravillous tropho-
blasts [16] supports its participation in the invasive phe-
notype of genuine trophoblasts.

In order to elucidate the effect of bradykinin on cell
migration/invasion, it is necessary to consider migration
and invasion in the context of the repetitive conforma-
tional changes of the cytoskeleton involved in these
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Figure 4 Formation of filopodia in HTR-8/SVneo cells. A. Representative images of filopodias in the area connecting two cells after 18 hours
of stimulation with BK (10.0 pMol/L), and with BK (10.0 uMol/L) plus the antagonist of the B2R, HOE-140 (10.0 uMol/L) obtained with a laser
scanning confocal microscope. B. Effect of BK and BK plus HOE-140 on the number of filopodia. Mean + SE; *p < 0.001 vs. control and HOE-140,

processes [48]. The initial migratory response of a cell is
to polarize and form cellular protrusions, such as actin
microspikes, filopodia and lamellipodia, which push for-
ward the leading edge of the cell to invade the sur-
rounding tissue. The formation of these protrusions
requires the polymerization of actin, and their stability
depends on adherence to the extracellular matrix and
the adjacent cells via transmembrane receptors linked to
the actin cytoskeleton [27,49]. The increase in the num-
ber of filopodia in HTR-8/SVneo cells incubated with
bradykinin confirmed these modifications of the actin
cytoskeleton.

It has been shown that the formation of filopodia,
actin microspikes, and lamellipodia are dependent on
Cdc42 and Racl. In concordance with our observations
in HTR-8/SVneo cells, bradykinin promotes the forma-
tion of Cdc42-dependent membrane protrusions in
fibroblasts [33], as well as peripheral actin microspikes
and membrane ruffles with a temporal pattern similar to
that observed with Cdc42Hs [48]. In human umbilical

vein endothelial cells, Cdc42 is specifically activated by
bradykinin [50]. In endothelial progenitor cells, BK sti-
mulates the formation of filopodia and recruitment of
Racl to the cell membrane; while the BK-induced polar-
ization, formation of filopodia, and migration were
inhibited by the B2R antagonist HOE-140 [29]. Part of
the effects we observed after bradykinin stimulation
could be mediated by the pro-invasive Cdc42 and Racl-
dependent responses provoked by PGE,, also present in
HTR-8/SVneo cells [10,51,52], since the B2R mediates
COX-2 induced PGE, release in vascular smooth muscle
and tumoral cells [53,54].

Apart from its conformational changes, a migrating
cell must detach from the ECM and neighboring cells.
In this regard, matrix metalloproteinases (MMPs) are
believed to be a dominant system in trophoblast inva-
sion [9]. Stimulation of the B2R induces MMP overex-
pression and cell migration in a rat astroglial cell line
[39], while the BIR induces release of MMP-2 and
MMP-9 in breast cancer cells [37]. Co-localization of
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Figure 5 Gelatinase activity of the culture media of HTR-8/Svneo cells. A. Representative zymogram from conditioned media of HTR-8/
SVneo cells cultured for 18 hours under control conditions (C) and with BK (10.0 uMol/L) from three different experiments; all lanes were loaded
with equivalent amounts of proteins (25 pg). Human recombinant pro-MMP-9 and pro-MMP-2 were used as standards. B. Densitometric analysis.

Mean + SE; n = 3, N.S.

.

MMP-9 and the B2R was observed in our previous
studies in guinea-pig extravillous trophoblast [46]. The
co-localization of MMP-9 and MMP-2 with the B2R
was confirmed in HTR-8/SVneo cells by immunohisto-
chemistry and enzymatic activity in this study. In spite
of the functional and spatial associations between brady-
kinin and MMPs, no changes were observed in MMP-2
and MMP-9 activity in culture media after bradykinin
stimulation.

The participation of plasminogen activators (PA) in
BK enhanced invasion deserves further exploration. The
B2R stimulates tissue (t)PA release from human
endothelium [55], HTR-8/SVneo cells express urokinase
(u)PA and tPA mRNA [36,40,41,56], uPA has been
detected in extravillous trophoblasts, and gonadotrophin
releasing hormones I and II, key facilitators of tropho-
blast invasion, are capable of up-regulating uPA [57].

Can the promigratory and invasive effect of BK be
linked to what is already known about the modulation
of the KKS system in pregnancy? In normal pregnant
women the surge in urinary kallikrein reaches its maxi-
mum between 8 to 12 weeks, a stage of active tropho-
blast invasion [58]. On the contrary, reduced urinary
kallikrein levels are observed in hypertensive pregnan-
cies [59], and at 16 weeks represent one of the best

predictors of preeclampsia [60]. Having demonstrated
kallikrein and the B2R in cells involved in placentation in
humans, guinea-pigs and rats [16,19-21,23,45,46,61,62],
we hypothesize that a defective response of the KKS at
the primordial target, the utero-placental interface could
impair trophoblast invasion. This impairment could
derive in part, from dimers of the angiotensin II type 1
and the B2 receptors observed in preeclampsia, which
enhance the effect of angiotensin II and blunt the
response to B2R stimulation [63,64]. Unfortunately, cir-
culating levels of bradykinin are difficult to determine
due to rapid degradation and artifactual generation of the
peptide during sampling. Though these difficulties have
been circumvented by determining a stable plasma
metabolite-BK1-5-by liquid chromatography-tandem
mass spectrometry [55], even if circulating levels could
be titrated in normotensive and hypertensive pregnan-
cies, the tissue bradykinin content would be impossible
to define.

Perspectives

This first report demonstrating a B2R-dependent
stimulatory effect of bradykinin on trophoblast migra-
tion and invasion in an immortalized first trimester cell
line supports the participation of the KKS in the local
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adaptations of pregnancy in a relatively recently
described non-vasoactive role. Since the gene expression
profile of HTR-8/SVneo is related-but dissimilar to pri-
mary CTB or EVT [47]-further studies, ideally in ani-
mals that share an analogous pattern of trophoblast
invasion with humans, or in vivo complex models, as
cocultured trophoblasts and endothelial cells or explants
from early pregnancies with cognate outcomes are war-
ranted [65,66].
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