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Abstract

Background: The endometrium is a dynamic tissue whose changes are driven by the ovarian steroidal hormones.
Its main function is to provide an adequate substrate for embryo implantation. Using microarray technology,
several reports have provided the gene expression patterns of human endometrial tissue during the window of
implantation. However it is required that biological connections be made across these genomic datasets to take
full advantage of them. The objective of this work was to perform a research synthesis of available gene expression
profiles related to acquisition of endometrial receptivity for embryo implantation, in order to gain insights into its
molecular basis and regulation.

Methods: Gene expression datasets were intersected to determine a consensus endometrial receptivity transcript
list (CERTL). For this cluster of genes we determined their functional annotations using available web-based
databases. In addition, promoter sequences were analyzed to identify putative transcription factor binding sites
using bioinformatics tools and determined over-represented features.

Results: We found 40 up- and 21 down-regulated transcripts in the CERTL. Those more consistently increased
were C4BPA, SPP1, APOD, CD55, CFD, CLDN4, DKK1, ID4, IL15 and MAP3K5 whereas the more consistently
decreased were OLFM1, CCNB1, CRABP2, EDN3, FGFR1, MSX1 and MSX2. Functional annotation of CERTL showed it
was enriched with transcripts related to the immune response, complement activation and cell cycle regulation.
Promoter sequence analysis of genes revealed that DNA binding sites for E47, E2F1 and SREBP1 transcription
factors were the most consistently over-represented and in both up- and down-regulated genes during the
window of implantation.

Conclusions: Our research synthesis allowed organizing and mining high throughput data to explore endometrial
receptivity and focus future research efforts on specific genes and pathways. The discovery of possible new
transcription factors orchestrating the CERTL opens new alternatives for understanding gene expression regulation
in uterine function.

Background
The human endometrium is a complex tissue whose
cyclic regulation is mainly driven by the changing pat-
tern of the ovarian steroidal hormones estradiol (E2) and
progesterone (P4) [1]. The main function of the

endometrium is to provide receptive substrate at the
appropriate time for blastocyst implantation. Although it
is non-adhesive to embryos throughout most of the
menstrual cycle [2] the action of P4 on an E2-primed
endometrium induces a certain gene expression profile
that is favorable for blastocyst adhesion during a
restricted period of time known as the ‘window of
implantation’ [3,4]. In women, this maternally directed
receptive phase appears to be of approximately 5 days’
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duration, from day 20 to day 24 of a 28-days menstrual
cycle [5]. The molecular basis of the window of implan-
tation in human endometrium is beginning to be unre-
vealed and a number of biochemical markers for uterine
receptivity have been proposed [3,6].
Microarrays analysis, an assay that is used to measure

the level of mRNA expression of thousands of genes in
a group of cells [7], enables discovery of genes or path-
ways likely to be involved in a biological process. This
approach has been used to broadly characterize the
molecular bases of endometrial function in women, by
determining the gene expression profiles corresponding
to each endometrial phase during the menstrual cycle
[8-10]. In addition, it has been used to specifically inves-
tigate the acquisition of endometrial receptivity to
embryo implantation during spontaneous cycles [11-15].
Since changes in the endometrium toward acquisition of
receptivity are mainly driven by progesterone (P4)
[16,17], two strategies have been used for gene discovery
during spontaneous menstrual cycles. These are based
on the comparison of the endometrial transcriptome
under peak P4 circulating levels (days 19-23, window of
implantation) compared to the endometrial gene expres-
sion profiles obtained under absent (days 8-11, prolifera-
tive phase) [11,12] or low (days 15-17, early secretory
phase) [13-15,18,19] serum P4.
Although DNA microarrays are a powerful tool for

gene discovery, there are several substantial sources of
noise in microarray data. Intra- and inter-microarray
variations limit the statistical power to discriminate the
differentially expressed genes. While validation of micro-
array data is required to overcome this issue, most
reports of endometrial gene expression analysis included
validation of only a small number of differentially
expressed genes (usually less than 10) by an indepen-
dent mRNA quantification method (Northern blot,
semi-quantitative or quantitative RT-PCR) [20]. Integra-
tion and cross-validation of data sets about endometrial
gene expression profiles produced by different groups
could increase confidence in gene expression results for
many more genes than is tractable with classical valida-
tion [21,22] and should provide the up- and down-
regulated genes that together orchestrate the acquisition
of the receptive phenotype of the endometrium. Such
exploration and integration could help researchers to
obtain a comprehensive view of existing data and better
prioritize experimental efforts.
Transcriptional regulatory mechanisms are crucial for

temporal and spatial gene expression. These mechan-
isms are mediated by a set of transcription factors (TFs),
proteins which have the ability to bind to a specific
region on the gene (known as motifs or transcription
factor binding sites (TFBS)), to regulate transcription. It
is thought that co-expression of genes frequently arises

from transcriptional co-regulation. As co-regulated
genes share some similarities in their regulatory
mechanism, possibly at transcriptional level, their pro-
moter regions may contain common motifs that are
binding sites for transcription regulators [23]. Given a
cluster of endometrial regulated genes with similar
expression profiles, the characterization of their regula-
tory regions is a fundamental step toward understanding
the largely unexplored networks of gene regulation in
this complex tissue responsible for their coordinated
behavior. Computation biology of gene regulation offers
several bioinformatic tools developed for the prediction
of TFBS within a specific regulatory DNA sequence
[24]. Given a set of co-regulated transcripts, in silico
predictions of TFBS in their regulatory regions offers a
unique opportunity to identify novel components, lead-
ing to the formulation of transcriptional regulatory net-
works hypotheses that can be further tested in the wet
laboratory.
The aim of this study was to increase our understanding

of endometrial receptivity to embryo implantation, by per-
forming a research synthesis of the publicly available DNA
microarray data. The first objective was to determine
genes consistently reported in the literature as either
up- or down-regulated from pre receptive to the receptive
endometrium. The second objective was to identify possi-
ble TFs that may mediate the regulation of endometrial
gene expression, by analyzing the cis-regulatory sequences
of genes sharing a common regulatory behavior.

Methods
Integration and cross-validation of microarrays data
The available data sets comparing endometrial gene
expression profiles from the proliferative vs. mid secre-
tory phase [11,12] and from early secretory vs. mid
secretory phase [9,13-15,19] were analyzed (Table 1).
The UniGene key identifier (cluster ID) for each differ-
ential expressed transcript was obtained from the
SOURCE [25], NetAffx [26] and UniGene [27] data-
bases. Each UniGene entry is a set of transcript
sequences that appear to come from the same transcrip-
tion locus (gene or expressed pseudogene) and was used
for cross-referencing transcripts amongst databases. The
information from each database was imported into
Microsoft Access® software and used as a relational
database to determine transcripts that show consistent
differential expression under similar experimental condi-
tions. Those having a similar transcriptional response
(up- or down-regulation) in at least 4 reports for
increased and 3 for decreased transcripts were consid-
ered biologically relevant and included in a list we have
designated the ‘consensus endometrial receptivity tran-
script list’ (CERTL). The difference in threshold for con-
sidering down-regulated transcripts is because the study
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from Haouzi et al 2009 [18] does not disclose the
decreased transcripts.

Functional clustering
Those up- and down-regulated genes from the CERTL
were submitted to web-based databases for functional
annotation analysis in order to gain an in-depth under-
standing of the biological themes in the CERTL. DAVID
(Database for Annotation, Visualization and Integrated
Discovery) [28] and GATHER (Gene Annotation Tool
to Help Explain Relationships) [29] webtools were used
for this purpose. Both services extract the biological
meaning of submitted genes by retrieving their func-
tional annotations from the Kyoto Encyclopedia of
Genes and Genomes (KEGG) [30], Biocarta pathways
[31] and Gene Ontology (GO) [32] databases.

TFBS detection in promoter regions of genes associated
to endometrial receptivity
We firstly examined the promoter region of our genes
of interest defined as the region proximal to the tran-
scription-start site of genes transcribed by RNA poly-
merase II. For a systematic search for potential TFBS,
we used the following approaches and platforms to
increase the power of our results:
MotifScanner. We used the stand-alone version of

Motifscanner [33] that searches for potential TFBSs in a
set of sequences using all the TRANSFAC vertebrate
position-weigh matrices (PWMs) [34]. The information
of TFBS obtained from MotifScanner was sent to the
software TOUCAN [23] for determination of PWMs
that were significantly over-represented.
Over-represented Transcription Factor Binding Site

Prediction Tool (OTFBS). This web-tool [35,36] searches
for potential TFBSs based on the TRANSFAC PWMs

using the MatInspector algorithm [37] and determines
over-represented motifs in regulatory sequences.
The Transcription Element Listening System (TELiS).

The TELiS database [38,39] uses the TRANSFAC and
JASPAR [40] PWMs in order to detect potential TFBS.
It uses the MatInspector algorithm through the Java
application PromoterScan [38] and identifies over-
represented motifs.
GATHER. This database [29] searches for potential

TFBS using TRANSFAC 8.2 PWMs [41,42] and identi-
fies statically over-represented TFBS.

Results
Identification of genes associated to endometrial
receptivity
We intersected the lists of regulated genes reported in
studies using microarrays analysis of endometrial recep-
tivity for determining those consistently regulated across
different reports. As expected the number of coincident
genes was small, considering the number of genes com-
prising each list. We identified 40 up-regulated genes in
at least four of seven reports (Table 2) and 21 down-
regulated genes present in at least three of six studies
considered (Tables 3), collectively denominated CERTL.
The most consistent up-regulated genes were C4BPA,
SPP1, APOD, CD55, CFD, CLDN4, DKK1, ID4, IL15
and MAP3K5; whereas OLFM1, CCNB1, CRABP2,
EDN3, FGFR1, MSX1 and MSX2 were the most consis-
tently down-regulated in endometrial tissue for the
acquisition of receptivity to embryo implantation.

Functional associations of transcripts from CERTL
To gain further understanding of the potential func-
tional roles of regulated transcripts present in CERTL
we obtained the functional annotations from each gene

Table 1 Endometrial gene expression reports performed at the time of implantation in human using DNA microarray

Study First sample (day
of cycle, number

of samples)

Second sample (day of
cycle, number
of samples)

Microarrays
platform

Fold-change
cut-off value

N° of up-
regulated
transcripts

N° of down-
regulated
transcripts

Kao et al. (2002)
[11]

Proliferative phase
(8-11, n = 4)

Mid-secretory
(21-23, n = 7)

Affymetrix Hu95A ≥2.0 156 377

Carson et al.
(2002) [13]

Early-secretory
(15-17, n = 3*)

Mid-secretory
(20-22, n = 3*)

Affymetrix Hu95A ≥2.0 323 370

Borthwick et al.
(2003) [12]

Proliferative phase
(9-11, n = 5*)

Mid-secretory
(19-21, n = 5*)

Affymetrix
Hu95A-E

≥2.0 90 46

Riesewijk et al.
(2003) [14]

Early-secretory
(15, n = 5)

Mid-secretory
(20, n = 5)

Affymetrix Hu95A ≥3.0 153 58

Mirkin et al.
(2005) [15]

Early-secretory
(16, n = 3)

Mid-secretory
(21, n = 5)

Affymetrix
HG_U95Av2

≥2.0 49 58

Talbi et al.
(2006)¶ [9]

Early-secretory
(n = 3)

Mid-secretory
(n = 8)

Affymetrix HG-
U133 plus 2.0

≥1.5 1415 1463

Haouzi et al.
(2009)† [18]

Early-secretory
(16, n = 31)

Mid-secretory
(20, n = 31)

Affymetrix HG-
U133 plus 2.0

≥2.0 945 67

* = pooled samples, ¶ = day the cycle not specified, † = reports only the top 20 up-regulated genes as supplementary data, timing of endometrial biopsies based
on first day of menses and not confirmed, possible endometrial pathologies were not excluded.
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Table 2 Up-regulated genes contained in the consensus endometrial receptivity transcripts list (CERTL) based on
published reports about human endometrial receptivity using microarray analysis

UniGene
ID

Gene
Symbol

Gene Title Kao et al.
(2002)
[11]

Carson et
al. (2002)

[13]

Borthwick
et al.
(2003)
[12]

Riesewijk
et al.
(2003)
[14]

Mirkin et
al. (2005)

[15]

Talbi et
al. (2006)

[9]

Haouzi et
al. (2009)

[18]

Hs.1012 C4BPA complement component 4
binding protein, alpha

↑ ↑ ↑ ↑ ↑ ↑

Hs.313 SPP1 secreted phosphoprotein 1
(osteopontin, bone sialoprotein I,
early T-lymphocyte activation 1)

↑ ↑ ↑ ↑ ↑ ↑

Hs.522555 APOD apolipoprotein D ↑ ↑ ↑ ↑ ↑

Hs.126517 CD55 Decay accelerating factor for
complement

↑ ↑ ↑ ↑ ↑

Hs.155597 CFD complement factor D (adipsin) ↑ ↑ ↑ ↑ ↑

Hs.647036 CLDN4 claudin 4 ↑ ↑ ↑ ↑ ↑

Hs.40499 DKK1 dickkopf homolog 1 (Xenopus
laevis)

↑ ↑ ↑ ↑ ↑

Hs.519601 ID4 Inhibitor of DNA binding 4,
dominant negative helix-loop-helix
protein

↑ ↑ ↑ ↑ ↑

Hs.654378 IL15 interleukin 15 ↑ ↑ ↑ ↑ ↑

Hs.186486 MAP3K5 mitogen-activated protein kinase
kinase kinase 5

↑ ↑ ↑ ↑ ↑

Hs.511605 ANXA2 annexin A2 ↑ ↑ ↑ ↑

Hs.422986 ANXA4 annexin A4 ↑ ↑ ↑ ↑

Hs.524224 C1R complement component 1, r
subcomponent

↑ ↑ ↑ ↑

Hs.80409 GADD45A growth arrest and DNA-damage-
inducible, alpha

↑ ↑ ↑ ↑

Hs.386567 GBP2 guanylate binding protein 2,
interferon-inducible

↑ ↑ ↑ ↑

Hs.183109 MAOA monoamine oxidase A ↑ ↑ ↑ ↑

Hs.532325 PAEP progestagen-associated
endometrial protein (glycodelin)

↑ ↑ ↑ ↑

Hs.384598 SERPING1 serpin peptidase inhibitor, clade G
(C1 inhibitor), member 1,
(angioedema, hereditary)

↑ ↑ ↑ ↑

Hs.1584 COMP cartilage oligomeric matrix protein ↑ ↑ ↑

Hs.558314 CP ceruloplasmin (ferroxidase) ↑ ↑ ↑

Hs.368912 DPP4 dipeptidyl-peptidase 4 (CD26,
adenosine deaminase complexing
protein 2)

↑ ↑ ↑

Hs.446392 DYNLT3 Dynein, light chain, Tctex-type 3 ↑ ↑ ↑

Hs.198862 FBLN2 fibulin 2 ↑ ↑ ↑

Hs.433300 FCER1G Fc fragment of IgE, high affinity I,
receptor for; gamma polypeptide

↑ ↑ ↑

Hs.432132 G0S2 G0/G1switch 2 ↑ ↑ ↑

Hs.2681 GAST gastrin ↑ ↑ ↑

Hs.616962 GDF15 growth differentiation factor 15 ↑ ↑ ↑

Hs.105806 GNLY granulysin ↑ ↑ ↑

Hs.386793 GPX3 glutathione peroxidase 3 (plasma) ↑ ↑ ↑

Hs.497636 LAMB3 laminin, beta 3 ↑ ↑ ↑

Hs.433391 MT1G Metallothionein-IG ↑ ↑ ↑

Hs.262857 PRUNE2 Prune homolog 2 (Drosophila) ↑ ↑ ↑

Hs.50223 RBP4 retinol binding protein 4, plasma ↑ ↑ ↑

Hs.654444 S100A4 S100 calcium binding protein A4 ↑ ↑ ↑

Hs.2962 S100P S100 calcium binding protein P ↑ ↑ ↑
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and determined the enriched processes from two different
web-based tools. The up-regulated transcript list was con-
sistently enriched with transcripts related to the immune
response and complement activation whereas the down-
regulated transcript list was enriched with transcripts
related to cell cycle regulation (Tables 4 and 5).

Identification of consensus sequences for TFBS sites of CERTL
We hypothesized that genes showing a common regula-
tory behavior may also share common regulatory

mechanisms such as TFBSs in their respective promoter
regions. To identify these possible common regulatory
patterns that should be over-represented in the CERTL,
we took advantage of several publicly available bioinfor-
matics tools. The potential TFBS were detected in a first
step, and then those statistically over-represented in our
endometrial gene cluster were determined. The results
are listed in Table 6 for up- and down-regulated tran-
scripts respectively. Interestingly, DNA binding sites for
E47, Sterol Regulatory Element Binding Protein 1

Table 2 Up-regulated genes contained in the consensus endometrial receptivity transcripts list (CERTL) based on pub-
lished reports about human endometrial receptivity using microarray analysis (Continued)

Hs.517070 SLPI secretory leukocyte peptidase
inhibitor

↑ ↑ ↑

Hs.517033 TGM2 transglutaminase 2 (C polypeptide,
protein-glutamine-gamma-
glutamyltransferase)

↑ ↑ ↑

Hs.525607 TNFAIP2 tumor necrosis factor, alpha-
induced protein 2

↑ ↑ ↑

Hs.695930 VCAN versican ↑ ↑ ↑

Hs.2157 WAS Wiskott-Aldrich syndrome
(eczema-thrombocytopenia)

↑ ↑ ↑

Up-ward arrows indicate up-regulation of the respective transcript.

Table 3 Down-regulated genes contained in the consensus endometrial receptivity transcripts list (CERTL) based on
published reports about human endometrial receptivity using microarray analysis

UniGene
ID

Gene
Symbol

Gene Title Kao et al.
(2002)
[11]

Carson
et al.

(2002) [13]

Borthwick
et al. (2003)

[12]

Riesewijk
et al. (2003)

[14]

Mirkin
et al.

(2005) [15]

Talbi
et al.

(2006) [9]

Hs.522484 OLFM1 olfactomedin 1 ↓ ↓ ↓ ↓ ↓

Hs.23960 CCNB1 cyclin B1 ↓ ↓ ↓ ↓

Hs.405662 CRABP2 cellular retinoic acid binding protein 2 ↓ ↓ ↓ ↓

Hs.1408 EDN3 endothelin 3 ↓ ↓ ↓ ↓

Hs.264887 FGFR1 fibroblast growth factor receptor 1 (fms-
related tyrosine kinase 2, Pfeiffer syndrome)

↓ ↓ ↓ ↓

Hs.424414 MSX1 msh homeobox 1 ↓ ↓ ↓ ↓

Hs.89404 MSX2 msh homeobox 2 ↓ ↓ ↓ ↓

Hs.523852 CCND1 cyclin D1 ↓ ↓ ↓

Hs.524947 CDC20 cell division cycle 20 homolog (S. cerevisiae) ↓ ↓ ↓

Hs.1594 CENPA centromere protein A ↓ ↓ ↓

Hs.83758 CKS2 CDC28 protein kinase regulatory subunit 2 ↓ ↓ ↓

Hs.530904 CSRP2 cysteine and glycine-rich protein 2 ↓ ↓ ↓

Hs.367725 GATA2 GATA binding protein 2 ↓ ↓ ↓

Hs.596913 HPGD hydroxyprostaglandin dehydrogenase 15-
(NAD)

↓ ↓ ↓

Hs.654504 IHH Indian hedgehog homolog (Drosophila) ↓ ↓ ↓

Hs.438720 MCM7 Minichromosome maintenance complex
component 7

↓ ↓ ↓

Hs.75823 MLLT11 Myeloid/lymphoid or mixed-lineage leukemia
(trithorax homolog, Drosophila); translocated
to, 11

↓ ↓ ↓

Hs.143751 MMP11 matrix metallopeptidase 11 (stromelysin 3) ↓ ↓ ↓

Hs.2256 MMP7 Matrix metalloproteinase 7 ↓ ↓ ↓

Hs.658169 SFRP4 secreted frizzled-related protein 4 ↓ ↓ ↓

Hs.182231 TRH thyrotropin-releasing hormone ↓ ↓ ↓

Down-ward arrows indicate down-regulation of the respective transcript.
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Table 4 Functional annotation clusters for up- and down-regulated transcripts from CERTL obtained through GATHER
webtool

Database Functional annotation number of genes p Value

up-regulated transcripts

Gene Ontology response to stimulus 16 <0.0001

Gene Ontology response to biotic stimulus 12 <0.0001

Gene Ontology defense response 11 <0.0001

Gene Ontology immune response 10 <0.0001

Gene Ontology response to stress 9 0.0001

Gene Ontology complement activation, classical pathway 4 <0.0001

Gene Ontology complement activation 4 <0.0001

KEGG Pathway Complement and coagulation cascades 4 0.0002

down-regulated transcripts

Gene Ontology morphogenesis 10 0.0001

Gene Ontology cytokinesis 4 0.0001

Gene Ontology skeletal development 4 0.0001

Gene Ontology development 12 0.0002

KEGG Pathway cell cycle 4 0.0002

Enriched functional annotations found in GATHER (Table 4) and DAVID (table 5) appear in bolded style.

Table 5 Functional annotation clusters for up- and down-regulated transcripts from CERTL obtained through DAVID
webtool

Database Functional annotation number of genes p Value

up-regulated transcripts

GOTERM_CC_FAT extracellular region 22 <0.0001

SP_PIR_KEYWORDS signal 22 <0.0001

UP_SEQ_FEATURE signal peptide 22 <0.0001

GOTERM_BP_FAT defense response 9 <0.0001

GOTERM_BP_FAT positive regulation of immune response 7 <0.0001

GOTERM_BP_FAT inflammatory response 7 <0.0001

GOTERM_BP_FAT immune effector process 6 <0.0001

GOTERM_BP_FAT complement activation 5 <0.0001

GOTERM_BP_FAT immunoglobulin mediated immune response 5 <0.0001

GOTERM_BP_FAT lymphocyte mediated immunity 5 <0.0001

GOTERM_BP_FAT activation of immune response 5 <0.0001

KEGG_PATHWAY Complement and coagulation cascades 5 <0.0001

SP_PIR_KEYWORDS complement pathway 4 <0.0001

GOTERM_BP_FAT response to steroid hormone stimulus 4 0.0068

GOTERM_BP_FAT cell cycle 7 0.0038

down-regulated transcripts

GOTERM_BP_FAT response to steroid hormone stimulus 4 0.0068

SP_PIR_KEYWORDS cell cycle 6 0.00045

KEGG_PATHWAY cell cycle 4 0.0038

GOTERM_BP_FAT cell division 5 0.0028

GOTERM_BP_FAT cell cycle 7 0.0038

GOTERM_BP_FAT regulation of cell cycle 6 0.00047

SP_PIR_KEYWORDS developmental protein 6 0.0041

UP_SEQ_FEATURE metal ion-binding site:Zinc 1 3 0.0053

Enriched functional annotations found in GATHER (Table 4) and DAVID (table 5) appear in bolded style.
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(SREBP1) and E2F1 were the most consistently over-
represented and present in both up- and down-regulated
transcripts. The number of increased genes with pre-
dicted TFBS for E2F1, SREBP1 and E47 was at least 20,
13 and 7 respectively in a total of 40. Of 21 decreased
genes the number of transcripts with predicted TFBS
was at least 14, 2 and 3 respectively. Other TFs over-
represented were MEF2, FREAC2 and ARNT.

Discussion
Scientific knowledge of how endometrial receptivity is
regulated is fundamental for the understanding of the
mechanisms that govern embryonic implantation. The
availability of public datasets related to global endome-
trial gene regulation during the acquisition of the recep-
tive phenotype, provides a tool for the analysis of
regulation of gene expression using bioinformatics tools.
Using DNA microarrays analysis, several approaches
have been used for determining the genes of uterine
receptivity assessing the endometrium in different

physiological [9,11-15,18,43], pathological [44-48] or
intervened conditions [49,50]. We here analyzed seven
reports of endometrial gene expression profiling during
spontaneous cycles: Carson et al. [13], Kao et al. [11],
Borthwick et al. [12], Riesewijk et al. [14], Mirkin et al.
[15], Talbi et al. [9] and Haouzi et al. [18]. Since the
number of endometrial samples analyzed in each of
these studies was limited, the question arises as to
whether the groups investigated were representative of
the population. This is a major concern for any statisti-
cal analysis. Therefore we considered all studies together
in a research synthesis to provide a larger sample size
thus consolidating the selection of actual regulated tran-
scripts in the endometrium. A first step was to associate
probes and available annotations in the reports that
belong to the same UniGene cluster (i.e. with same Uni-
Gene ID), and then proceed to further comparisons to
identify common transcripts that are similarly regulated
during the window of implantation. Previous partial ana-
lyses [15,43,51-53] found very few transcripts to be

Table 6 Transcription factor binding sites (TFBS) over represented in up- and down- regulated genes from CERTL

Up-regulated genes Down-regulated genes

Tool for TFBS
analysis

Transcription factor
name

TFBS
matrix

p
Value

Tool for TFBS
analysis

Transcription factor
name

TFBS
matrix

p
Value

MotifScanner E47 TRANSFAC 0.008 MotifScanner E47 TRANSFAC 0.002

MEF2 TRANSFAC 0.002 SREBP1 TRANSFAC 0.007

SREBP1 TRANSFAC 0.007 ARNT TRANSFAC 0.001

TELIS PBX1 TRANSFAC 0.0001 TELIS ARNT TRANSFAC <0.0001

AP1 TRANSFAC 0.0005 HNF1 TRANSFAC 0.007

EVI1 TRANSFAC 0.002 HNF-1 JASPAR 0.007

SOX5 TRANSFAC 0.003 OTFBS Hb TRANSFAC <0.0001

Sox-5 JASPAR 0.0031 BR-C Z1 TRANSFAC <0.0001

Pbx1 JASPAR 0.007 BR-C Z4 TRANSFAC 0.004

FREAC-2 JASPAR 0.007 HFH-2 TRANSFAC <0.0001

SOX-9 JASPAR 0.008 HFH-3 TRANSFAC <0.0001

OTFBS GCN4 TRANSFAC 0.001 FOXJ2 TRANSFAC <0.0001

CP2 TRANSFAC 0.007 GATHER NFY TRANSFAC 0.004

Ik-2 TRANSFAC <0.0001 E2F1 TRANSFAC 0.006

Bcd TRANSFAC <0.0001 DEAF1 TRANSFAC 0.007

ARP-1 TRANSFAC <0.0001

MEF-2 TRANSFAC 0.005

cap TRANSFAC 0.004

E47 TRANSFAC 0.002

SREBP-1 TRANSFAC <0.0001

GATHER SRF TRANSFAC 0.001

NRF2 TRANSFAC 0.002

E2F1 TRANSFAC 0.002

FREAC2 TRANSFAC 0.003

HEB TRANSFAC 0.004

ELK1 TRANSFAC 0.005

Transcription factors predicted by more than one analysis tool appear in bolded style.
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consistently regulated. In our study we found 61 tran-
scripts regulated in the same direction in the endome-
trium during the window of implantation; 40 were up-
regulated in at least 4 of 7 studies and 21 were down-
regulated in at least 3 of 6 reports analyzed.
The relatively small number of consistently regulated

transcripts identified could be explained by the differ-
ences in the study design, number of samples included
and the methodology used for data analysis. However,
other factors should be considered when interpreting
gene expression analyses related to endometrial recep-
tivity. Importantly, the reports included here, all used
RNA extracted from whole endometrial biopsies, tissue
that comprises a number of different cell types, includ-
ing epithelial (luminal and glandular), stromal fibro-
blasts, endothelial cells, vascular smooth muscle cells
and lymphoid cells. Hence the endometrial changes
induced by E2 and P4 result from the differential
response of each cell type to the same hormones.
A clear example is the down regulation of the PR during
the secretory phase in endometrial epithelial cells but
not in the stromal compartment [54]. Microdissection
of cell subpopulations (for example, with laser capture
[55]) may disclose the actual gene expression profiles of
each cell subpopulations within the tissue context. In
addition, any biopsy sample may not represent the com-
plete endometrium since microenvironments occur
within this tissue. Nevertheless gene expression profiling
of endometrial biopsies during the window of implanta-
tion is one of the most promising strategies for gene
discovery related to uterine receptivity.
The intersection of gene lists performed in the present

study showed that most consistently increased tran-
scripts during the window of implantation were C4BPA,
SPP1, APOD, CD55, CFD, CLDN4, DKK1, ID4, IL15
and MAP3K5 whereas OLFM1, CCNB1, CRABP2,
EDN3, FGFR1, MSX1 and MSX2 were the most consis-
tently decreased. However, correlation of transcript
abundance change with changes in the corresponding
protein, followed by functional testing of the biological
effect of that protein, is necessary to confirm the biolo-
gical significance of the microarray changes.
The functional annotations of up-regulated genes

within the CERTL showed a significant association to
the immune response and complement activation. Most
of these genes belong to the innate immune system,
which is the immunological first line of defense that
provides an immediate response through its ability to
distinguish between ‘infectious non-self’ and ‘non-infec-
tious self’ [56]. Therefore, innate immunity regulation in
the endometrium is of fundamental significance for
establishing a microenvironment that will provide ade-
quate tolerance to the implanting embryo [57]. Regard-
ing complement system regulatory proteins, their

possible roles and expression levels in the endometrium
throughout the normal menstrual cycle have been
reported [58-62]. Most of these studies show an increase
of complement-regulatory molecules during the secre-
tory phase in human endometrium [58,61,62] in line
with the increased mRNA levels of the complement sys-
tem molecules C4b-binding protein (C4BP) and adipsin
(complement component factor D, CFD) from the
CERTL. It is postulated that the complement system
might be conferring immunity to the uterine cavity,
defending it against bacterial infection. In this sense,
C4BP may provide a protective role to the embryo
where an increased expression of an inhibitor of com-
plement system activation could reduce the chance of a
misdirected complement attack to the embryo (which is
considered as a semiallograft). Indeed, C4BPA transcript
levels are abnormally decreased in the endometrium dur-
ing the receptive phase in women with endometriosis
[44,63], implantation failure [46] and unexplained recur-
rent abortion [64], suggesting it may have a role in embryo
implantation. By contrast, adipsin may have a non-
complement function in the female reproductive tract as
suggested for other complement-molecules [60]. Adipsin
is necessary for the production of oviduct-derived embryo-
trophic factor-3 (ETF-3) [65,66] which stimulates embryo
development [67,68]. Thus up-regulation of adipsin in
human endometrium may assist the embryo during the
implantation process as shown for other chemokines in
the endometrium [69].
Several down-regulated genes within CERTL are asso-

ciated with cell cycle regulation, including cyclin B1
(CCNB1) the most consistently down-regulated gene.
CCNB1 binds to p34 (cdc2) to form the mitosis-
promoting factor during G2 phase [70,71]. In human
secretory phase endometrium, CCNB1 is decreased
compared to the proliferative phase [72,73] supporting
the microarray data used to construct the CERTL.
Moreover, in endometrial cell cultures, P4 decreases the
expression of CCNB1, inhibits cell proliferation and
induces apoptosis, suggesting that cyclin B1 may play an
important role in proliferation and differentiation of the
endometrial tissue under steroidal regulation.
Cellular retinol binding protein-2 (CRABP2) is a cyto-

solic protein that binds retinoic acid (RA) with high affi-
nity [74]. The CRABP2 transcript has been reported to
decrease from the proliferative to the secretory phase in
human endometrium [75], which is in line with the
microarrays reports used for constructing our CERTL.
The physiological effects of RA are mediated by mem-
bers of two families of nuclear receptors [76,77] and
they all have been detected by immunohistochemistry in
human endometrium throughout the phases of the men-
strual cycle [78] in epithelial and stromal cells. The fact
that CRABP2 decreases in human endometrium at the
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time of embryo implantation might suggest that RA sig-
naling is required to be silenced, since it shuttles RA to
the RA receptors in the cell nucleus [74,78]. In the
mouse uterus, CRABP2 decreases around the time of
embryo implantation [79] whereas P4 induces the
expression of cyp26a1, the enzyme responsible for RA
catabolism in mouse uterine epithelial cells [80,81].
Knock down of cyp26a1 in mouse uterus decreases
embryo implantation rate [82]. In addition, in human
secretory endometrium, cyp26a1 mRNA level is ~20
times higher than in the proliferative phase [83]. Since
the action of RA is essential for endometrial stromal cell
decidualization [79] silencing of RA signaling during the
window of implantation might prevent precocious
decidualization of stromal cells that could compromise
endometrial receptivity.
The cytokine endothelin-3 (EDN3) and fibroblast

growth factor receptor-1 (FGFR1) were among the tran-
scripts consistently down-regulated in the endometrium
during the window of implantation. There is abundant
evidence showing that both endometrial receptivity and
blastocyst implantation are regulated by cytokines and
growth factors [84]. Immunoreactive pro-endothelin-3
has been described in human endometrium in luminal
and glandular epithelia; however cycle-dependent regu-
lation of this molecule is not clear [85]. Its action in the
human endometrium is suggested to be in paracrine
vasoactive control of the uterine vascular bed [86]. How-
ever this cytokine has many other functions such as pro-
liferation and development of several cell types [87-90].
In the mouse oviduct, EDN3 signaling has been asso-
ciated with the regulation of transcripts related to
TGFb, IL-10, and C/EBP [91]. Its functional role in the
human endometrium and the effects of its down-regula-
tion during the window of implantation has yet to be
determined. FGFR1 and its ligand FGF-2 have also been
described in human endometrium [92-95]. Immunoreac-
tive FGFR1 and its transcript are significantly higher in
proliferative that in secretory human endometrium
[93,94] supporting the down-regulation of this transcript
included in the CERTL. However, not all studies have
reported such endometrial regulation [95]. FGF-2 pro-
motes endometrial stromal proliferation [94,96] and
ovarian steroid hormones modulate its synthesis and
function in endometrial cells [96,97]. The functional
relevance of FGFR1 down-regulation in endometrial
receptivity remains to be elucidated.
With regard to the TFs present in the CERTL, we

found the inhibitor of DNA binding 4 (ID4) up-regulated
and MSX-1 and -2 down-regulated. In animal models,
uterine MSX-1 and -2 are down-regulated by P4 [98] or
during embryo implantation [99-101]. Constant expres-
sion of Msx1 in the infertile Lif-/- mice uterus further
supports a role for MSX-1down-regulation in

endometrial receptivity [100]. ID4 TF is a member of a
family of inhibitor of DNA binding proteins (Id) that has
been associated with cell proliferation and differentiation
[102-105]. Its regulatory effect in human endometrium is
unknown. Many other TFs associated with endometrial
regulation [106-120] have provided insights into the
molecular basis of gene regulation for endometrial func-
tion in response to sex steroid hormones. We reasoned
that the cluster of regulated genes derived from microar-
ray experiments related to endometrial receptivity (i.e.
CERTL) would allow a different strategy for TF discov-
ery, namely comparative promoter analysis. This is based
on the hypothesis that genes showing a common regula-
tory behavior may also share common regulatory
mechanisms such as TFBSs in their respective promoter
regions. Interestingly, we found that E47, E2F1 and
SREBP1 are common TFBSs for up- and down-regulated
transcripts from CERTL so it is likely that they orches-
trate the changes in transcript profile for endometrial
receptivity. None of these three TFs have been described
in normal human endometrium in the context of their
regulation during the menstrual cycle, in response to
steroidal hormones or a regulatory role on uterine func-
tion. However, there is no guarantee that the revealed
TFBS are indeed functional in the context of regulatory
regions, hence biological verification is required.
The E2F1 TF belongs to the E2F family [121] and dis-

plays properties of both an oncogene (induction of pro-
liferation) and tumor suppressor (induction of
apoptosis) [122,123]. E47 is a TF that belongs to the
class I bHLH proteins, also known as E proteins [124]
which form homo- or hetero-dimers and bind to specific
DNA sequences [125]. Sterol regulatory element-binding
protein 1 (SREBP1) is a membrane-bound TFs that
belongs to a family of basic helix-loop-helix-leucine zip-
per (bHLHLZ) TFs [126]. Upon activation, SREBP1
translocates into the nucleus where it binds to sterol
regulatory sites located in the promoter regions of genes
involved in cholesterol homeostasis and transport
[127,128] such as the steroidogenic acute regulatory
protein (StAR), a key regulator of steroidogenesis [129].
Function of bHLH TFs such as E47 can be blocked by
Inhibitor of DNA binding (Id) TFs [130,131]. In addi-
tion, SREBP1 as a member of bHLHLZ family, may also
be subjected to regulation by Id proteins [132]. In the
CERTL ID4 transcript was up-regulated in the receptive
endometrium: as a consequence E47 and SREBP-1 TFs
may be less available for binding to DNA in target
sequences and direct co-regulated transcripts. Interest-
ingly, the TF E2F1 is involved in the transcriptional con-
trol of id4 gene expression [133], supporting our
bioinformatics findings of overrepresented TFBSs.
It is well known that P4 is essential for the establish-

ment and maintenance of pregnancy in the women and
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in this sense the study of its actions in the uterus has been
focused on changes in gene expression [134,135].
Responses to P4 in reproductive tissues occur by the acti-
vation of classical nuclear P4 receptors (PRA and B),
which upon binding with their ligand, function as TFs reg-
ulating gene expression [136]. In addition, many transcrip-
tional actions of P4 require interactions with corepressors
and coactivators [137-139]. However, P4 may also act in
the uterus through at least two families of nonclassical
membrane progestin receptors [140,141]. Hence the geno-
mic and non-genomic pathways may interact and integrate
to ultimately affect endometrial gene expression. Interest-
ingly, two of the endometrial transcripts more consistently
up-regulated during the mid-secretory phase, APOD and
SPP1, do not display progesterone response elements in
their cis-regulatory sequences [12,15] suggesting that P4
induction is not directly mediated by the ligand-bound PR.
Interestingly both APOD and SPP1 genes display TFBS for
E2F1 in their upstream regulatory sequences. In breast
cancer cells, P4 up-regulates the expression of E2F1 and
hence indirectly affects transcription of classic E2F1 target
genes [115]. Such regulation of E2F1 induced by proges-
tins has been shown to be multimodal since ligand-bound
PR can regulate its transcription directly but also indirectly
through other molecules to achieve further progestin-
mediated regulation of E2F1 expression [142]. Whether
E2F1 along with E47 and SRBP1 are also mediating the P4
transcriptional regulation in the endometrium for acquisi-
tion of receptivity has yet to be determined.
Identification of the CERTL and the possible regula-

tory TFs in the present research synthesis should not be
viewed as an end in itself. Their real value increases
only as these results move through to biological valida-
tion, ranging from the numerical verification of expres-
sion levels with alternative techniques, to ascertaining
the actual regulatory role of the TFs in the endometrial
transcriptional networks. Finally, for several transcripts
contained in the CERTL, biological knowledge is com-
pletely lacking in relation to endometrial physiology, so
extensive research is required to better understand the
mechanisms underlying endometrial receptivity.

Conclusion
In conclusion, a CERTL comprised of 61 transcripts
consistently regulated in human endometrium during
the receptive period for embryo implantation has been
identified in this study. These transcripts are mainly
involved in immune response, complement activation
and cell cycle regulation; suggesting that these biological
process are associated with the acquisition of the recep-
tive phenotype. Finally, TFBS for E47, SREBP1 and E2F1
were over-represented in the regulatory region of genes
from CERTL, suggesting that they may be mediating the
effects of the ovarian steroidal hormones in the

endometrial transcriptional regulation. Biological valida-
tion of such bioinformatic predictions will shed light on
the transcriptional networks associated to uterine recep-
tivity for embryo implantation. Moreover, this knowl-
edge can potentially be applied to improve fertility in
infertile patients.
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