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Abstract
Background: It has been well established that prolactin (PRL) signals through the long form of its
receptor (PRL-RL) and activates the Jak/Stat pathway for transcription of PRL target genes.
However, signaling pathways mediated through the short PRL-R isoform (PRL-RS) remains
controversial. Our recent finding that PRL signaling through PRL-RS represses two transcription
factors critical for follicular development lead us to examine other putative PRL/PRL-RS target
transcription factors in the decidua and ovary, two well-known target tissues of PRL action in
reproduction.

Methods: In this investigation we used mice expressing PRL-RS on a PRL-R knockout background
and a combo protein/DNA array to study the transcription factors regulated by PRL through PRL-
RS only.

Results: We show that PRL activation of the PRL-RS receptor either stimulates or inhibits the
DNA binding activity of a substantial number of transcription factors in the decidua as well as ovary.
We found few transcription factors to be similarly regulated in both tissues, while most
transcription factors are oppositely regulated by PRL in the decidua and ovary. In addition, some
transcription factors are regulated by PRL only in the ovary or only in the decidua. Several of these
transcription factors are involved in physiological pathways known to be regulated by PRL while
others are novel.

Conclusion: Our results clearly indicate that PRL does signal through PRL-RS in the decidua as
well as the ovary, independently of PRL-RL, and activates/represses transcription factors in a tissue
specific manner. This is the first report showing PRL/PRL-RS regulation of specific transcription
factors. Many of these transcription factors were not previously known to be PRL targets,
suggesting novel physiological roles for this hormone.
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Background
PRL is a polypeptide hormone known to exert a great
number of biological functions by regulating transcrip-
tion of genes involved in several physiological pathways
[rev in [1]]. PRL relays its effect by binding to specific
receptors (PRL-R) and activating intracellular signaling
molecules. The PRL-R belongs to type I transmembrane
receptor family and structurally resembles the class I
cytokine receptor superfamily [rev in [2]]. Multiple iso-
forms of membrane-bound PRL-R, resulting from alterna-
tive splicing of the primary transcript, have been
identified in several species [3-5]. The two major PRL-R
isoforms described in rodents are the short (PRL-RS) and
long (PRL-RL) forms. These different PRL-R isoforms
share a common extracellular domain, but differ in the
length and composition of their cytoplasmic domain, that
mediates signaling. The long isoform contains the entire
spectrum of signaling entities attributed to PRL-R, which
include Box1 and 2 motifs with the variable box (V-box)
in between and an extended Box 2 (X-box) [rev in [6]].
Jak2 kinase is constitutively associated with Box 1 of the
PRL-R and is rapidly activated upon ligand binding
[5,7,8]. Well-known targets of activated Jak2 include the
Stat transcription factors, which are primary signaling
mediators of PRL action [1,7]. It was thought that PRL
does not signal though PRL-RS and that this receptor
serves as a dominant negative to PRL-RL, since it lacks the
cytoplasmic domain required for association with signal-
ing molecules, such as the Stat transcription factors [9-11].
However, recent data from our laboratory [12,13] and
that of others [14,15], have revealed that PRL has distinct
physiological functions in mice and cells expressing solely
the PRL-RS. Whereas mice expressing PRL-RS display early
follicular recruitment followed by severe follicular death
and premature ovarian failure [13], overexpression of
PRL-RS rescues the mammopoiesis defect in heterozygous
PRLR knockout mice [14]. Among the human short iso-
forms, SF1b appears to be the closer to the mouse isoform
(PR-1), as both utilize exon 11 and exclude exon 10 and
both exerts dominant-negative effects on signaling by the
long form. Using cell culture studies, Walker and group
have shown that the human short isoform SF1b, not only
acts as a dominant negative to the long form, but also
induces cellular differentiation [15]. Recently, we have
demonstrated both in vivo and in vitro [12,13], that PRL
signaling through PRL-RS represses the activity of two
transcription factors leading to inhibition in the activity of
genes essential for normal follicular development.

While these studies show a distinct physiological function
of PRL-RS, the signaling mechanisms involved in these
processes remain largely unidentified. Since one major
end-point of hormone signaling is activation/deactivation
of transcription factors, detection of the transcription fac-
tors regulated specifically after PRL-RS activation can pro-
vide important information on PRL action through PRL-

RS. Traditionally, transcription factor activity has been
analyzed by electrophoretic mobility shift assay (EMSA)
or by detection of specific posttranslational modifications
known to affect DNA binding activity, such as phosphor-
ylation. Unfortunately, these methods can detect activa-
tion of only one transcription factor/reaction and also
require a large amount of sample. Here, we used a high
throughput protein/DNA array approach in which the
activities of a large number of transcription factors can be
easily detected using biotin-labeled DNA binding probes
and a chemiluminescence method. We took advantage of
this array and the availability of transgenic mice express-
ing only PRL-RS in the PRLR null background [13], which
allow us to study the selective signaling mechanism of
PRL-RS independently of PRL-RL, in vivo. By combining
these two powerful models, we identified several tran-
scription factors regulated by PRL/PRL-RS. Our results
reveal putative novel mechanisms of PRL signaling in two
important PRL target tissues, the decidua and ovary.

Methods
Animal model and tissue preparation
Transgenic mice expressing only PRL-RS were previously
generated by microinjecting the eF1-PRLR-PR-1 trans-
genic construct encoding the mouse cDNA for PRL-RS
into fertilized PRLR+/- oocytes derived from 129SV pure
background mice [14]. Animals were genotyped by PCR
using genomic DNA isolated from tail as described previ-
ously [13]. Mice were kept at 25°C with a 14-h light/10-h
dark cycle and were fed a commercial pellet diet ad libi-
tum.

Female PRL-RS transgenic mice were mated with vasect-
omized males to induce pseudopregnancy. Progesterone
pellet (25 mg, Innovative Research of America, Sarasota,
FL) was implanted sc in each mouse on the day when the
vaginal plug was found. Decidualization was induced
with intrauterine administration of sesame oil on day 4.
On day 9 of pseudopregnancy, mice were injected with
ergocryptine (200 ug, s.c., Sigma, St. Louis, MO) to block
PRL secretion. After 6 hrs, a single i.p. injection of either
recombinant oPRL (60 ug) purchased from Dr. Arieh Ger-
tler (Protein Laboratories Rehovot Ltd., Rehovot, Israel)
or vehicle (0.1%BSA in PBS) was given to the mice. Mice
were sacrificed after 30 and 120 min to obtain ovaries and
decidua that were frozen in liquid nitrogen and stored at
-80°C until processing for RNA or protein extraction. All
experimental procedures were performed in accordance
with the principles of the National Institutes of Health
Guide for the Care and Use of Laboratory Animals and
were approved by the Institutional Animal Care and Use
Committee.

Protein/DNA array
Nuclear extracts from decidual and ovarian tissue were
prepared as previously described [16]. Three animals were
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used for each time point. Activities of transcription factors
were screened using six different TranSignal protein/DNA
arrays according to the manufacturer's instructions (Pan-
omics, Inc., Redwood City, CA, USA). In brief, the nuclear
extracts were incubated with a set of biotin-labeled DNA
binding oligonucleotides to allow the formation of pro-
tein/DNA complexes. The protein/DNA complexes were
separated from the free probes, and the oligonucleotides
in the complexes were isolated from the proteins and
hybridized to the TranSignal (combo) Array. This array
contains consensus binding site for 345 transcription fac-
tors as individual spot. Detection of the signals was
obtained by chemiluminescence. The signal was scanned
with a phosphorImager (Molecular Dynamics, CA) and
spot intensities were analyzed using the AtlasImage 1.5
software (Clontech, CA). Transcription factors were
excluded if they were detected at levels near or below
background. Differences over 2-fold in the intensity of the
spots were considered significant.

Electrophoresis Mobility Shift Assay
Five picomoles of RUNX1 annealed oligonucleotide
probes are labeled using 10 U of T4 polynucleotide kinase
(Invitrogen, Carlsbad, CA) and 25 μCi of γ-32P ATP
(Amersham, Piscataway, NJ) to a specific activity of more
than 8000 cpm/fmol. Five micrograms of nuclear extract
are incubated with 1 μg of poly (dI-dC) (Amersham) and
50 fmol of probe in 1× binding buffer on ice for 30 min.
Cold competitor probes are added to a final concentration
of 2.5 pmol. Samples are run on a 4% nondenaturing
polyacrylamide gel in 0.5× Tris borate EDTA buffer at 200
V for 2–3 h. The gels are then dried and analyzed by auto-
radiography.

Results
Regulation of Transcription factor activities by PRL in the 
ovary and decidua of transgenic mice expressing PRL-RS
To determine the downstream signaling pathways of PRL/
PRL-RS, we examined the activities of transcription factors
in the ovary and decidua of PRL-RS expressing mice using
the TranSignal protein/DNA array. For this purpose (Fig.
1A), decidualization was induced with an intrauterine oil
injection in day 4 pseudopregnant transgenic mice
expressing only PRL-RS. On day 9, mice were treated with
ergocryptine, to block endogenous PRL secretion, fol-
lowed by PRL injections. Decidua and ovaries were har-
vested after 30 and 120 min of PRL administration and
nuclear extracts were isolated. Out of 345 transcription
factors analyzed, 40 were found to be regulated by PRL in
the decidua, while 66 were regulated in the ovary, as
shown by DNA binding activity. In the decidua (Fig. 1B),
52% of the regulated transcription factors were activated
whereas, 48% were inhibited by PRL. In the ovary (Fig.
1B), only few transcription factors (20%) were inhibited,
whereas the majority (80%) of the DNA binding proteins

was activated. The transcription factors that are not regu-
lated by PRL in the decidua [see additional file 1] and the
ovary [see Additional file 2] are also listed.

Next, we categorized transcription factors as those either
activated or inhibited by PRL in the decidua and ovary at
early (30 min) and late (120 min) time points. As shown
in Fig. 2, fewer transcription factors were activated at both
time points in the decidua (upper panel) than in the ovary
(lower panel). Interestingly, the transcription factor that
regulates ornithine decarboxylase (ODC), the best estab-
lished marker of decidualization, was activated in the
decidua, suggesting a role for PRL/PRL-RS in the expres-
sion of this important decidual gene. NFkB, known to be
activated by PRL in other tissues [17,18], was also acti-
vated in the decidua, suggesting a broad role of PRL in the
activation of these DNA binding proteins. Interestingly,
we found other transcription factors, such as Foxo4, Oct-
1 and several members of the Pax family, not previously
known to be expressed in the decidua or to be regulated
by PRL, to be robustly activated by PRL in decidua express-
ing the short form of the PRL receptor, indicating new PRL
signaling mechanisms in this tissue. In the ovary, a much
greater number of transcription factors were activated at
30 min of PRL treatment, and remained activated at 120
min (Fig. 2, lower panels). Many of these transcription
factors such as C/EBPα, c-Myb, GATA-4, GRE, HIF-1, MTF,
NF-1, RUNX1/PEBP2, TR, and Smad3/4 were previously
shown to be expressed in the ovary and to regulate genes
involved in ovarian steroidogenesis and function [19-26].
However, our finding that they are robustly activated by
PRL through PRL-RS is novel. This is the first report of the
expression and PRL mediated activation of ovarian DNA
binding proteins (Fig. 2, lower panel).

As shown in Fig. 3, some of the DNA binding proteins
were activated only transiently either at 30 min or 120
min after PRL treatment. In the decidua, we found four
transcription factors to be activated at 30 min (Fig. 3A,
upper panel) or 120 min (Fig. 3B, upper panel) of PRL
treatment. The expression and PRL activation of these
transcription factors in the decidua have not been previ-
ously reported. In the ovary, nine transcription factors
were found to be activated only at 30 min (Fig. 3A, lower
panel). Notable transcription factors in this category, such
as COUP-TF and NF-Y, were previously shown to play a
distinct role in ovarian functions [27-29], whereas Ets-1
has been reported in the normal ovary as well as in path-
ological conditions [30,31]. Whether PRL/PRL-RS activa-
tion of this transcription factor plays a role in the
pathology of the ovary remains a subject of investigation.
Interestingly, a few of the transcription factors such as
Myb and RFX1/2/3, which were activated early in the
ovary (Fig. 2C, upper panel), showed delayed activation
in the decidua (Fig. 3B, upper panel). Most of the ovarian
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transcription factors activated at 120 min (Fig. 3B, lower
panel) such as AML1, NFAT and Pax5 are known to be
involved in the immune response.

We also analyzed the transcription factors repressed by
PRL/PRL-RS (Fig. 4). In the decidua of PRL-RS expressing
mice, nine transcription factors were profoundly
repressed by PRL at both 30 and 120 min (Fig. 4A, upper
panel), while ten were repressed only at 30 min (Fig. 4A,
lower panel). Only few of these transcription factors, such
as Sp1, HIF-1, NF-Y, PRE and RAR, have known functions
in the decidua [32-35]. In the ovary, no transcription fac-
tors were repressed at both 30 and 120 min, but different
sets of transcription factors were markedly inhibited at
either 120 min (Fig. 4B, upper panel), or 30 min (Fig. 4B,
lower panel). Sp1, EGR1 and NFKB, three known targets
of PRL [12,18,36], were also inhibited in the ovary (Fig.

2D, lower panel). Interestingly, Cdx2 and E47, known to
be upregulated in ovarian carcinoma or PCOS ovaries,
were repressed in the ovary at 120 min by PRL/PRL-RS sig-
naling (Fig. 4b, upper panel).

Differential regulation of transcription factors in decidua 
and ovary by PRL through PRL-RS
Surprisingly, we found only six transcription factors simi-
larly regulated by PRL in the ovary as well as in the
decidua of PRL-RS expressing mice (Table 1). Whereas
Pax5, Pax6, RUNX1 and RFX activities were stimulated by
PRL in both target tissues, cdx2 and Sp1 activities were
inhibited. Pax5 was one of most highly activated tran-
scription factor in the decidua (Fig. 2A).

RUNX1 is another transcription factor whose activity was
modulated similarly in the decidua and ovary. This tran-

Animal model and DNA/protein array analysis in the PRLR-/-RS miceFigure 1
Animal model and DNA/protein array analysis in the PRLR-/-RS mice. (A) PRLR-/-RS mice were mated with vasect-
omized males to induce pseudopregnancy. The day the vaginal plug is found, PRLR-/-RS mice were implanted with progester-
one pellets. On day 4, decidualization was induced with intrauterine administration of oil. On day 9 of pseudopregnancy, PRLR-
/-RS mice were injected with ergocryptine (200 ug, sc) for 6 hr followed by a single ip injection of either PRL (60 ug) or vehicle 
(control). Ovaries and decidua were obtained after 0, 30 and 120 min of PRL treatment. (B) TranSignal, Protein/DNA array, 
was performed using nuclear extracts from these tissues. Chart showing percentage of transcription factors activated or inhib-
ited in decidua and ovary.
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scription factor was transiently activated at 30 min in
decidua while it remained activated in the ovary for a
longer time. We further examined the regulation of
RUNX1 in the decidual nuclear extracts from mice
expressing only PRL-RS by EMSA analysis. A double-
stranded DNA oligo corresponding to RUNX1 binding
sites was used as the probe. We found a single DNA/pro-
tein complex that was markedly increased by PRL treat-
ment at 30 min only (Fig. 5). This complex could be
blocked by competition with excess cold probe confirm-
ing the specificity of the band.

In sharp contrast, we found a significant number of tran-
scription factors, including Foxo4, NFkB, NFY and
Smad3/4, to be inhibited in the decidua and to be stimu-
lated in the ovary suggesting that PRL may activate/deacti-
vate similar transcription factors through PRL-RS in an
opposite way depending on the target tissue (Table 2).

Functional category of PRL regulated transcription factors
Although some transcription factors have redundant
action, we grouped them (Table 3) according to the func-
tion of the genes whose transcription they regulate. These

Transcription factors activated at both 30 and 120 min of PRL treatment in decidua and ovary of PRLR-/-RS miceFigure 2
Transcription factors activated at both 30 and 120 min of PRL treatment in decidua and ovary of PRLR-/-RS 
mice. Day 9 pseudopregnant PRLR-/-RS mice were injected with ergocryptine (200 μg, sc) for 6 hr followed by a single ip 
injection of either PRL (60 ug) or vehicle (control). Decidua and ovaries were obtained after 0, 30 and 120 min of PRL treat-
ment. DNA binding activities of transcription factors were measured by Protein/DNA binding assay using nuclear extracts 
from decidua. Upper panel, transcription factors activated by PRL in the decidua at both 30 and 120 min. Lower panel, tran-
scription factors activated by PRL in the ovary at both 30 and 120 min.
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functional categories are growth and differentiation,
development and steroidogenesis, immune, inflamma-
tory and stress response, and glucose metabolism.

In the decidua, close analysis of the array data revealed
that, a majority of the transcription factors regulated by
PRL is involved in growth and differentiation (Table 3A).
We found Myb, ODC-TF, Pax1, PEBP2, PRDII-BF1, RFX,
TEF1, and TEBP to be activated by PRL, while AP-2, c-myb
BP, HIF-1, MT-box, MTF-1, and RAR/DR-5 to be inhibited.
Although few of the transcription factors (ODC-TF, AP-2,
c-myb, and HIF-1) are established PRL targets [23,37-40],
this is the first report showing their regulation through
PRL-RS. The PRL regulation of several other factors is
novel and reveals unknown functions of this pleiotropic
hormone in the decidua. Several transcription factors,
involved in development (Table 3B), were also regulated
by PRL in the decidua of PRLR-/-RS mice. These include:

HOXD, Pax6, Pax8, CTCF, and HFH3. These transcription
factors are not known to be regulated by PRL, although
HOXD plays a key role in endometrial proliferation,
which is a prerequisite event for decidualization [41].
Interestingly, three out of four of the transcription factors
involved in the immune response, namely NFIL-2, CDP
and RORE, were inhibited by PRL signaling through PRL-
RS in the decidua (Table 3C). We also found the binding
activity of a small number of transcription factors
involved in inflammatory/stress response (Foxo4, NFκB,
and Sp1) to be regulated by PRL in the decidua (Table
3D). PRL was shown previously to regulate Sp1 [12],
NFκB [18,42] and another member of the Foxo family
(Foxo3a). No transcription factor involved in glucose
metabolism was regulated by PRL in the decidua.

In contrast to the decidua, a significant number of tran-
scription factors regulated by PRL in the ovary are

Transcription factors activated transiently either at 30 min or 120 min by PRL treatment in decidua and ovary of PRLR-/-RS miceFigure 3
Transcription factors activated transiently either at 30 min or 120 min by PRL treatment in decidua and ovary 
of PRLR-/-RS mice. Day 9 pseudopregnant PRLR-/-RS mice were injected with ergocryptine (200 μg, sc) for 6 hr followed by 
a single ip injection of either PRL (60 ug) or vehicle (control). Decidua and ovaries were obtained after 0, 30 and 120 min of 
PRL treatment. DNA binding activities of transcription factors were measured by Protein/DNA binding assay using nuclear 
extracts from ovary. (A) Transcription factors activated at 30 min by PRL treatment in the decidua (upper panel) and ovary 
(lower panel). (B) Transcription factors activated at 120 min by PRL treatment in the decidua (upper panel) and ovary (lower 
panel).
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involved in glucose metabolism (Table 3E). This further
supports our previous finding [13] indicating that PRL sig-
naling through PRL-RS in the ovary profoundly affects
glucose metabolism. We also found transcription factors
involved in growth and differentiation (Table 3A), devel-
opment (Table 3B), immune (Table 3C), and inflamma-
tory/stress response (Table 3D) to be regulated by PRL in
the ovary. Some of the transcription factors grouped

under development such as GATA-4 [43], and COUP-TF
[44] also play critical roles in steroidogenesis. Of interest
was our finding that some of the transcription factors
involved in the immune response, such as AML1, GRE,
LyF-1, NFAT and Pax5, are activated by PRL in the ovary of
transgenic mice expressing PRL-RS, whereas transcription
factors involved in inflammatory or stress responses, such
as NFκB, E4BP4 and Sp1 are inhibited (Table 3C and 3D).

Discussion
We have recently provided evidence that PRL activation of
PRL-RS regulates the transcriptional activity of several
genes[12]. We have also shown, using cells expressing
either PRL-RL or PRL-RS, that activation of PRL-RS by PRL
represses the gene expression of Sp1 [12]. This indicated
to us that PRL-RS is a signaling receptor and that PRL acti-
vation of this receptor leads to activation/repression of
genes. Since gene regulation involves transcription factors

Transcription factors inhibited by PRL treatment in decidua and ovary of PRLR-/-RS miceFigure 4
Transcription factors inhibited by PRL treatment in decidua and ovary of PRLR-/-RS mice. Day 9 pseudopregnant 
PRLR-/-RS mice were injected with ergocryptine (200 μg, sc) for 6 hr followed by a single ip injection of either PRL (60 ug) or 
vehicle (control). Decidua and ovaries were obtained after 0, 30 and 120 min of PRL treatment. DNA binding activities of tran-
scription factors were measured by Protein/DNA binding assay using nuclear extracts from decidua. (A) Transcription factors 
whose DNA binding activities are inhibited at both time points (upper panel) or inhibited only at 30 min (lower panel) by PRL 
treatment in decidua. (B) Transcription factors whose DNA binding activities are inhibited at 120 (upper panel) or 30 min 
(lower panel) by PRL treatment in ovary.

A. Transcription factors inhibited by PRL in the decidua

R
el

at
iv

e 
de

ns
ity

0

100

200

300

400

500

A
p

-2

H
IF

-1

M
E

F
-1

M
T

F

N
F

IL
-2

N
F

-Y

P
R

E

R
A

R
(D

R
-5

)

T
R

(D
R

-4
)

PRL (30 min)
Control

PRL (120 min)

0

100

200

300

400

500

C
d

x2

E
47

E
4B

P
4

F
o

xo
4

L
-I

II 
B

P

M
S

P
1

M
yT

I

R
el

at
iv

e 
de

ns
ity

B. Transcription factors inhibited by PRL in the ovary

Both 30 and 120 min

30 min only 30 min only

0

100

200

300

400

500

600

S
p

1

R
el

at
iv

e 
de

ns
ity

C
D

P

c-
m

yb
B

P

C
T

C
F

E
T

F

H
F

H
-3

M
T

-B
o

x

R
O

R
E

R
R

E
B

S
m

ad
3/

4

.
0

200

400

600

800

E
G

R
1

M
D

B
P

N
F

-E
2

N
F

E
-

6

N
F

kB

P
R

D
II-

B
F

1

S
p

1

R
el

at
iv

e 
de

ns
ity

PRL (30 min)
Control

PRL (120 min)

120 min only

Table 1: Transcription factors similarly regulated by PRL in the 
decidua and ovary of PRLR-/-RS mice

Transcription Factor ID Decidua Ovary

Pax5 Activated Activated
Pax6 Activated Activated

RUNX1 Activated Activated
RFX1/2/3 Activated Activated

Cdx2 Inhibited Inhibited
Sp1 Inhibited Inhibited
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we used a combo protein/DNA array approach and mice
expressing only PRL-RS on a PRLR knockout background
to analyze the role of PRL on transcription factor activity
in two well established PRL target organs.

We found indeed that PRL markedly affects the activation
or inhibition of DNA binding activity of a substantial
number of transcription factors. Some were regulated sim-
ilarly in both ovary and decidua, while others were regu-
lated in an opposite way. The large majority however, was
regulated solely in either the ovary or decidua, suggesting
that PRL may affect several signaling pathways in a tissue
specific manner. One possibility for these differential
effects may be the cellular milieu of the target tissue such
as the level of expression of specific transcription factors
and/or availability of scaffolding proteins. Scaffolding
proteins are known to interact with signaling molecules
and prevent their degradation and/or facilitate their local-
ization at specific sites [45].

When organized by function, it became apparent that the
PRL/PRL-RS regulated transcription factors are involved in

glucose metabolism, growth and differentiation, the
immune response, inflammation and development and
steroidogenesis. While some of these transcription factors
were previously shown to be regulated by PRL [18,36,46],
this is the first report of their regulation through PRL-RS.
The PRL mediated activation/repression of other factors
and DNA binding proteins is novel and deserves further
investigation. One salient finding of this investigation is
that several transcription factors involved in glucose
metabolism are regulated by PRL-RS in the ovary but not
at all in the decidua. It is well known that defective glu-
cose metabolism in the ovary causes severe pathology in
follicular development and premature ovarian failure in
women in their twenties [47,48]. One key enzyme in glu-
coneogenesis, GALT (galactose-1-phosphate uridyltrans-
ferase), is abundantly expressed in the ovary. Mutation of
this gene in humans causes a defect in glucose synthesis
and results in an accumulation of galactose metabolite
that cannot pass through the cellular membrane. Its accu-
mulation into the cells causes an osmotic disequilibrium
that leads to water influx and ultimately to cell death. We
have recently shown [13] that in mice expressing only
PRL-RS, PRL represses the expression of GALT and causes
premature ovarian failure and non-apoptotic cell death,
similar to the pathology seen in women with the GALT
mutation [47-49]. We have also shown that it is the
repression of Foxo3a transcription factor by PRL/PRLRS
that leads to low levels of GALT [13]. The finding that a
number of additional ovarian transcription factors
involved in glucose metabolism are regulated by PRL
through PRL-RS specifically in the ovary may be of physi-
ological significance and deserves further investigation.
Another known effect of PRL in the follicle is the inhibi-
tion of aromatase activity [50]. Our finding that PRL acti-
vates COUP-TF, a known repressor of aromatase [51],
suggests a role for PRL activation of PRL-RS in the repres-
sion of this enzyme in the ovary. c-Myb, also regulated by

DNA binding activity of RUNX1Figure 5
DNA binding activity of RUNX1. Day 9 pseudopregnant 
PRLR-/-RS mice were injected with ergocryptine (200 μg, sc) 
for 6 hr followed by a single ip injection of either PRL (60 ug) 
or vehicle (control). Decidua were obtained after 0, 30 and 
120 min of PRL treatment. Nuclear extract from decidua was 
subjected to EMSA using oligonucleotide specific probe to 
RUNX1. Lane 1, 3 and 5 are nuclear extracts isolated from 
decidua of 0, 30 and 120 min PRL treated animals, respec-
tively. Lane 2, 4 and 5 are nuclear extracts treated with com-
petitor, a 50-fold molar excess of unlabeled probe.

PRL 0 m      30 m      120 m

- +     - +      - +Competitor

Runx1

1     2     3     4     5     6

Table 2: Transcription factors oppositely regulated by PRL in the 
decidua and ovary of PRLR-/-RS mice

Transcription Factor ID Decidua Ovary

NFkB Activated Inhibited
Foxo4 Activated Inhibited
NF-Y Inhibited Activated

Samd3/4 Inhibited Activated
ETF Inhibited Activated

HIF-1 Inhibited Activated
ISER Inhibited Activated

MT-Box Inhibited Activated
MTF Inhibited Activated

NFIL-2 Inhibited Activated
PRDII-BF1 Activated Inhibited

RREB Inhibited Activated
c-myb BP Inhibited Activated

TR Inhibited Activated
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PRL, stimulates transcription of genes involved in angio-
genesis such as VEGF [52]. The induction of c-Myb by PRL
through PRL-RS is of interest since PRL-RS is expressed in
the vasculature and signaling through this receptor has
been implicated in endothelial cell proliferation [53].

PRL is thought to play a role in modulating the immune
response in utero during pregnancy [42,54]. Importantly,
we find most of the transcription factors involved in the
immune response to be inhibited by PRL signaling
through PRL-RS in the decidua. More than 40% of decid-
ual cells are lymphocytes [55,56] and the PRL-R is
expressed by this cell type [1,57,58]. Some transcription
factors regulated by PRL/PRL-RS in the decidua are known
to control genes whose expression/repression plays a role
in decidualization. These include activator of ODC, the
transcription factor necessary for ornithine decarboxylase
(ODC) expression, the retinoic acid receptor (RAR/DR-5),
and members of the HOXD family. ODC, the enzyme that
catalyzes the transformation of L-ornithine into
putrescine, is a key regulatory member in the polyamine
biosynthetic pathway. ODC activity is associated with the
rate of growth [59]. Since tissue growth is an essential step
in the process of decidualization, ODC is considered as
marker enzyme for decidualization [60]. PRL is known to
stimulate ODC expression as well as enzyme activity [23].
Our finding suggests that the PRL-mediated regulation of
decidual ODC may involve PRL-RS and may be an impor-
tant function of this receptor in decidua. In contrast, tran-
scription factors such as RAR/DR-5, which has been
shown to suppress decidualization are inhibited in the
decidua by PRL/PRLRS [61]. Members of the HOXA and
HOXD family of transcription factors are expressed in the
decidua. They are involved in implantation and endome-
trial proliferation [41]. Whereas HOXA transcription fac-
tors are regulated by steroids, the regulation of members
of HOXD family is not known [62]. The marked stimula-
tion of HOXD DNA binding activity, by PRL, in the
decidua of mice expressing PRL-RS is intriguing and opens
new venues of investigation.

Another intriguing finding of this investigation is that sev-
eral members of the Pax family are activated by PRL in the
decidua as well as the ovary. Pax genes are regulators of tis-
sue development and cellular differentiation in embryos,
acting to promote cell proliferation, cell-lineage specifica-
tion, migration and survival. The function of these Pax
members in the adult ovary and decidua is not known.
However, several investigations indicate that the regula-
tion of these transcription factors involves methylation.
Pax2 is silenced by hypermethylation of its promoter [63].
Separate studies have reported silencing of Pax6 by
methyl-CpG-binding proteins in some breast cancer cell
lines and primary tumours [64]. Pax5 is inactivated by
aberrant methylation in tumor cell lines, as well as pri-

Table 3: List of transcription factors by functional category

A. Growth and Differentiation

Decidua Ovary

Myb Activated C/EBPalpha Activated
ODC Activated c-Myb Activated
Pax1 Activated EGR1 Inhibited

RUNX1 Activated HIF-1 Activated
PRDII-BF1 Activated NZF-3 Activated
RFX1/2/3 Activated TFIID Activated

TEF1 Activated
TFEB Activated
AP-2 Inhibited

c-Myb BP Inhibited
HIF-1 Inhibited

MT-Box Inhibited
MTF-1 Inhibited

RAR (DR-5) Inhibited

B. Development and Steroidogenesis

Decidua Ovary

CTCF Inhibited Cdx2 Inhibited
HFH-3 Inhibited COUP-TF Activated

HOXD8,9,10 Activated EKLF Activated
Pax6 Activated GATA-4 Activated
Pax8 Activated MZF1 Activated

Pax4 Activated
Pax6 Activated

C. Immune Response

Decidua Ovary

Pax5 Activated AML1 Activated
CDP Inhibited GRE Activated

NFIL-2 Inhibited LyF-1 Activated
RORE Inhibited NFAT Activated

Pax5 Activated

D. Inflammation/Stress

Decidua Ovary

Foxo4 Activated Foxo4 Inhibited
NFkB Activated NFkB Inhibited
Sp1 Inhibited Sp1 Inhibited

E4BP4 Inhibited

E. Glucose Metabolism

Ovary

ADR1 Activated
ANG-IRE Activated
MUSF1 Activated
PTF1 Activated

RIPE3a1 Activated
L-III BP Inhibited
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mary tumors from breast and lung [65]. The increase in
the DNA binding activity of Pax proteins may be a result
of increased expression due to hypomethylation in
response to PRL/PRL-RS signaling. Previously, PRL has
been shown to cause hypomethylation of DNA in the liver
and kidney of immature and mature rats [66]. Whether
PRL signaling through PRL-RS affects the DNA methyla-
tion pathway in both decidua and ovary remain a subject
for further investigation.

Another transcription factor activated in both decidua and
ovary is RUNX1. This protein belongs to a family of runt-
related transcription factors and binds to a consensus
sequence known as a PEPB2 site. RUNX1/PEBP2 is critical
for hematopoiesis and plays an important role in differen-
tiation of many cell types by recruiting corepressors and
coactivaotors [67]. Most importantly, RUNX1 has been
shown to regulate the expression of extracellular matrix
proteins, MMPs and TIMPs [68,69], which are essential
for decidual as well as corpus luteum maintenance and
function [rev in [70]]. Moreover, recent investigations
have shown an important role for RUNX1 in luteinization
and corpus luteum formation [71,72]. Whether PRL plays
a role in this process by activating RUNX1 is an interesting
possibility.

Conclusion
In conclusion, we have found that DNA binding activities
of several transcription factors are either activated or
inhibited by PRL in the decidua and ovary of PRLR-/-RS
mice. Transcription factors, such as the Pax family and
RUNX1/PEBP2, are similarly regulated in both decidua
and ovary, suggesting that some of the PRL/PRL-RS sign-
aling pathways are common to both of these reproductive
tissues. However, several transcription factors are differen-
tially regulated in the decidua and ovary by PRL/PRL-RS,
suggesting tissue specific signaling pathways and gene
expression. Overall, our results have suggested several
possible mechanisms of PRL signaling through PRL-RS in
two reproductive tissues. Further studies should reveal the
specific signaling pathways involved in the regulation of
these transcription factors and their downstream genes.
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