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Abstract
Background: In human and rodents, sperm-zona pellucida binding is mediated by a sperm surface
Galactosyltransferase that recognizes N-Acetylglucosamine residues on a glycoprotein ZPC. In
large domestic mammals, the role of these molecules remains unclear: in bovine, they are involved
in sperm-zona pellucida binding, whereas in porcine, they are not necessary. Our aim was to clarify
the role of Galactosyltransferase and N-Acetylglucosamine residues in sperm-zona pellucida
binding in ungulates. For this purpose, we analyzed the mechanism of sperm-zona pellucida
interaction in a third ungulate: the horse, since the Galactosyltransferase and N-Acetylglucosamine
residues have been localized on equine gametes.

Methods: We masked the Galactosyltransferase and N-Acetylglucosamine residues before the co-
incubation of gametes. Galactosyltransferase was masked either with an anti-Galactosyltransferase
antibody or with the enzyme substrate, UDP Galactose. N-Acetylglucosamine residues were
masked either with a purified Galactosyltransferase or with an anti-ZPC antibody.

Results and discussion: The number of spermatozoa bound to the zona pellucida did not
decrease after the masking of Galactosyltransferase or N-Acetylglucosamine. So, these two
molecules may not be necessary in the mechanism of in vitro sperm-zona pellucida interaction in
the horse.

Conclusion: The involvement of Galactosyltransferase and N-Acetylglucosamine residues in
sperm-zona pellucida binding may have been lost during evolution in some ungulates, such as
porcine and equine species.

Background
The enzyme Beta-1,4-galactosyltransferase I (GalTase) was
one of the first molecules involved in sperm-egg interac-

tion that was studied [1,2]. GalTase was originally charac-
terized for its role in oligosaccharide synthesis in the Golgi
complex. At this location, GalTase adds galactose from
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uridine diphosphate galactose (UDP-Galactose) to N-
acetylglucosamine (GlcNAc) residues on growing glyco-
protein chains. GalTase was localized to the surface of
spermatozoa as a plasma membrane protein [3]. It binds
to terminal GlcNAc residues on O-linked oligosaccharides
of ZPC [4,3].

GalTase was identified and localized in acrosome region
in the plasma membrane of spermatozoa from human
[5], rodents (mouse, rat, guinea pig), rabbit and ungulates
(bull, boar, stallion) [6]. In human, mouse, and ham-
ster,in vitro, when the GalTase or GlcNAc are masked, the
number of spermatozoa bound to the zona pellucida
decreases [7,1,2,8]. Thus, in these species, GalTase and
GlcNAc are involved in the mechanism of in vitro sperm-
zona pellucida binding. In ungulates, the role of GalTase
and GlcNAc remains unclear. In bovine,in vitro GalTase
masking inhibits the binding of spermatozoa to the zona
pellucida [9]. On the contrary, in porcine species, Rebeiz
and Miller [10] showed that masking of GalTase and Glc-
NAc did not disturb the binding of spermatozoa to the
zona pellucida. So, the involvement of GalTase and Glc-
NAc in sperm-zona pellucida binding in ungulates has to
be clarified.

In another ungulate, the horse, few studies were per-
formed to identify the molecules that play a role in sperm-
egg binding. GalTase was localized on the equine sperm
head [6] and GalTase activity was mostly confined to the
plasma membrane of equine spermatozoa [11]. GlcNAc
residues were also observed on the equine zona pellucida
and co-localized with the glycoprotein ZPC [12]. The
GalTase on the sperm head and GlcNAc residues on the
ZPC glycoprotein could bind during equine sperm-zona
pellucida interaction. However, in the horse, no data are
available about the role of these molecules in sperm-zona
pellucida binding.

Our aim was to study the role of GalTase and GlcNAc dur-
ing in vitro sperm-zona pellucida interaction in equine, in
order to clarify the role of these molecules in fertilization
in ungulates.

Methods
Chemical products were purchased from Sigma (Saint-
Quentin Fallavier, France) unless otherwise specified.

Equine oocytes collection and maturation
Equine ovaries collected from a local slaughterhouse were
transported at 30–37°C to the laboratory in 0.9% (w/v)
NaCl diluted in H2O. Cumulus-oocyte-complexes
(COCs) were aspirated from follicles using a 18.5 gauge
needle at 50 mm Hg vacuum pressure before and after
ovarian slicing.

In vitro maturation was performed in 500 μl of tissue cul-
ture medium 199 (TCM 199) supplemented with 50 ng
ml-1 Epidermal Growth Factor (EGF) [13] and 20% (v/v)
Fetal Calf Serum (FCS). Maturation took place in a
humidified atmosphere of 5% CO2 in air at 38.5°C for 30
hours. After in vitro culture, COCs were stripped of their
cumulus cells with small glass pipettes in 500 μl Dul-
becco's phosphate buffered saline solution (DPBS, Dul-
becco A, Paris, France). The denuded oocytes were
incubated in the IVF medium (see below).

Preparation of semen
In each experiment, we first tested fresh semen, then fro-
zen semen.

Preparation of fresh semen
Fresh equine semen was collected from a Welsh pony stal-
lion from our experimental stud using an artificial vagina.
It was prepared according to Palmer et al. [14], because
these conditions allow the best IVF rate when using fresh
semen. Briefly, immediately after collection, sperm was
filtered and diluted to 25 × 106 spermatozoa ml-1 in
Hank's solution supplemented with 1% (w/v) BSA and 20
mmol l-1 Hepes at pH 7.1 (HHBSA) [15]. It was preincu-
bated at 37°C for 30 minutes in anaerobic conditions.
Spermatozoa were then incubated with 6 μmol l-1 of cal-
cium ionophore A23187 (free acid) at 37°C for 5 minutes
[16]. Spermatozoa were centrifuged for 3 minutes at 500
× g. The pellet was resuspended in HHBSA (25 × 106 sper-
matozoa ml-1). The motility was visually evaluated using
an inverted epifluorescent microscope (Olympus, IMT-2,
Paris, France).

Preparation of frozen semen
Two straws of semen (100 × 106 spermatozoa ml-1) from
three Welsh pony stallions from our experimental stud
were rapidly thawed during 30 secondes in a water bath at
37°C. Sperm was prepared according to Dell'Aquila et al.
[17], because these conditions allow the best IVF rate
when using frozen semen. Briefly, sperm cells were pre-
pared using the swim-up procedure in Tyrode-lactate
medium modified for sperm treatment (Sp-TALP). The
chemical composition of Sp-TALP was Tyrode medium
supplemented with 1 mmol l-1 Pyruvate, 6 mg ml-1 BSA
(fatty acid free), 21 mmol l-1 Lactate, 50 μg ml-1 Gentami-
cine and 10 mmol l-1 Hepes. Semen was layered (0.2 ml/
tube) in a titled Falcon tube under 1 ml Sp-Talp and incu-
bated at 38.5°C for 1 hour in 5% CO2 in air. The top (0.4
to 0.5 ml of medium) from each tube containing motile
spermatozoa was removed, and the contents were pooled
and centrifuged at 300 × g for 10 minutes. The superna-
tant was discarded and the pellet was resuspended in Sp-
Talp for a total of 100 μl, then the concentration was cal-
culated. The spermatozoa were diluted in Sp-TALP
medium to 25 × 106 spermatozoa ml-1. The motility was
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visually evaluated with an inverted epifluorescent micro-
scope (Olympus, IMT-2).

IVF media
For fresh semen, the IVF medium was Synthetic Oviductal
Fluid (SOF, for details of chemical composition, refer to
Takahashi and First, [18] supplemented with 15% (v/v)
FCS and 3.2 μg ml-1 Gentamicine.

For frozen semen, the IVF medium was Tyrode-lactate
medium modified for IVF treatment (Fert-TALP) as fol-
low: Tyrode medium (100 mmol l-1 NaCl, 3.1 mmol l-1

KCl, 0.3 mmol l-1 NaH2PO4.2H2O, 2.1 mmol l-1 CaCl2,
0.4 mmol l-1 MgCl2.6H2O, 10 mg ml-1 Red Phenol, 25 mM
NaHCO3) supplemented with 1 mmol l-1 Pyruvate, 6 mg
ml-1 fatty acid free Bovine Serum Albumine (BSA), 21
mmol l-1 Lactate, 50 μg ml-1 Gentamicine, 1 μg ml-1

Heparine [17].

Experiment 1: GalTase masking with anti-GalTase 
antibodies
Assessment of the fixation of the anti-GalTase antibodies on 
spermatozoa
After spermatozoa preparation as previously described,
diluted fresh or frozen spermatozoa were dried on slides
at 37°C for 2 hours and fixed in ethanol/glacial acetic acid
(95/5 v/v) for 10 minutes at -20°C in a humidified cham-
ber. After fixation, each slide was dried at 37°C, covered
with PBS-BSA solution (1% (w/v) fatty acid free BSA
diluted in DPBS) for 1 hour and then, covered with anti-
GalTase antibodies (Rabbit antiserum raised against bac-
terially expressed recombinant murine Beta-1,4-Galactos-
yltransferase I kindly donated by Dr. Barry Shur; [1]) or
preimmune serum diluted 1/100 (as described by Larson
and Miller [6]) in PBS-BSA solution for 2 hours.

Slides were washed with 1 ml PBS-BSA solution and cov-
ered with Fluoprobes 488-conjugated goat anti-rabbit
antibodies (Goat anti-rabbit IgG F(AB')2, Interchim,
Montluçon, France) diluted 1/100 in PBS-BSA solution
for 2 hours in a covered humidified chamber to reduce the
light exposure. Each slide was washed with 1 ml PBS-BSA
solution and covered with Moviol V4-88 (133 mg ml-1,
Hoechst, Frankfort, Germany) and finally with a cover-
slip. Slides were kept in darkness at 4°C till examination
using an inverted epifluorescent microscope (Olympus,
IMT-2) at magnification ×400.

GalTase masking with anti-GalTase antibodies
After spermatozoa preparation as previously described,
fresh or frozen spermatozoa were incubated with anti-
GalTase antibodies or preimmune serum diluted 1/100 in
Sp-TALP (frozen semen) or HHBSA (fresh semen) or no
additive. The spermatozoa were incubated for 30 minutes
at 38.5°C in a humidified atmosphere of 5% CO2 in air.

In parallel, the in vitro matured oocytes (10 to 20 per well)
were incubated with anti-GalTase antibodies or preim-
mune serum diluted 1/100 in the IVF medium (Fert-TALP
or SOF) or no additive

Experiment 2: GalTase masking with UDP Galactose
After spermatozoa preparation as previously described,
diluted fresh or frozen spermatozoa were incubated in
HHBSA or sp-TALP with 10 mmol l-1 UDP Galactose (sub-
strate of GalTase) or 10 mmol l-1 UDP Glucose (sugar
which is not a substrate of GalTase) or no additive at
38.5°C in a humidified atmosphere of 5% CO2 in air for
10 minutes.

In parallel, the in vitro matured oocytes (10 to 20 per well)
were incubated in 500 μl IVF medium (Fert-TALP or SOF)
with 10 mmol l-1 UDP Galactose or 10 mmol l-1 UDP Glu-
cose or no additive for 10 minutes.

Experiment 3: GlcNAc masking with purified GalTase
Assessment of the GalTase fixation on the zona pellucida
After 30 hours of maturation, oocytes were incubated with
500 μg ml-1 GalTase (Beta-1,4-galactosyltransferase I
human, Sigma, Biochemika, Fluka, Switzerland) or no
additive in Fert-TALP or SOF medium for 1 hour at
38.5°C in humidified atmosphere of 5% CO2. The
oocytes were fixed in 500 μl paraformaldehyde 2% in
DPBS for 20 minutes at 37°C. After fixation, oocytes were
washed with DPBS and incubated in PBS-BSA solution
(5% (w/v) BSA in DPBS) for 1 hour at room temperature.
The oocytes were incubated with anti-GalTase antibodies
or preimmune serum diluted 1/50 in PBS-BSA solution
for 2 hours at room temperature. After incubation,
oocytes were washed with PBS-BSA solution and incu-
bated in Fluoprobes 488-conjugated goat anti-rabbit anti-
bodies diluted 1/100 in PBS-BSA for 2 hours in darkness
at room temperature. Oocytes were washed with PBS-BSA
solution, layed on a slide and covered with Moviol V4-88
and then, with a coverslip. Oocytes were kept in darkness
at 4°C until examination using an inverted epifluorescent
microscope (Olympus, IMT-2) at magnification ×400.

GlcNAc masking with purified GalTase
After 30 hours of maturation, oocytes (10 to 20 per well)
were incubated in the IVF medium (Fert-TALP or SOF)
with 500 μg ml-1 GalTase or no additive for 1 hour at
38.5°C in humidified atmosphere of 5% CO2 in air. They
were then transferred in IVF medium (Fert-TALP or SOF).

Experiment 4: ZPC masking with anti-ZPC antibodies
After 30 hours of maturation, oocytes (10 to 20 per well)
were washed in PBS-BSA (2% (w/v) fatty acid free BSA in
DPBS), and then incubated with anti-ZPC antibodies
(chicken anti-ZPC antibodies against porcine ZPC diluted
1/100 in PBS-BSA; kindly donated by Dr Sabine Kölle;
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[19]) or no additive for 1 hour at 38.5°C in humidified
atmosphere of 5% CO2 in air.

The oocytes were then transferred in IVF medium (Fert-
TALP or SOF).

Gametes co-incubation and assessment of sperm-zona 
pellucida binding
After GalTase, GlcNAc or ZPC masking, the spermatozoa
(final concentration of 5 × 105 cells ml-1) and the oocytes
(10 to 20 per well) with similar treatments were co-incu-
bated in 500 μl IVF medium for 20 minutes at 38.5°C in
a humidified atmosphere of 5% CO2 in air.

After gametes co-incubation, oocytes were washed four
times in DPBS in order to remove any unbound sperma-
tozoa on the zona pellucida. Using an inverted micro-
scope (Olympus IMT-2), the spermatozoa bound to the
zona pellucida were counted in all focal plans at magnifi-
cation ×400 by a blinded observer.

Statistical analysis
For each experiment, due to the limited number of
oocytes available on a single day, two to three replicates
were performed. The mean and SEM of the number of
spermatozoa bound to the zona pellucida per oocyte were

calculated in each group of oocytes (controls and mask-
ing). Depending on the experiment, we compared the
mean number of spermatozoa between groups (3 groups
in experiments 1 and 2, 2 groups in experiment 3 and 4).
When a significant effect between groups was observed
then we compared the groups in pairs. Statistical differ-
ence between group means was determined using an anal-
ysis of variance (ANOVA). The alpha level was 5% and P-
values < 0.05 were considered significant.

Results
Experiment 1: GalTase masking with anti-GalTase 
antibodies
Assessment of the fixation of the anti-GalTase antibodies on 
spermatozoa
In order to ascertain the binding of anti-GalTase antibod-
ies on the spermatozoa, equine spermatozoa were incu-
bated with anti-GalTase antibodies or preimmune serum.
On the spermatozoa incubated with antibodies, staining
was intense on the acrosomal region (figure 1A). The sper-
matozoa incubated with preimmune serum did not
exhibit any staining (figure 1B). Thus, anti-GalTase anti-
bodies are able to bind to the plasma membrane in the
acrosomal region of spermatozoa.

Spermatozoa incubated with anti-GalTase antibodies (A) or with preimmune serum (B)Figure 1
Spermatozoa incubated with anti-GalTase antibodies (A) or with preimmune serum (B). (Observation with an 
epifluorescent microscope at 400 × magnification).
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GalTase masking with anti-GalTase antibodies
Table 1 shows that, when using fresh semen, the number
of spermatozoa bound to the zona pellucida was not dif-
ferent between the three groups : anti-GalTase antibody,
preimmune serum or no additive (P > 0.05).

When using frozen semen, fewer spermatozoa were fixed
on the zona pellucida in the presence of anti-Galtase anti-
bodies or no additive than in the presence of preimmune
serum (P < 0.001; Table 1). However, the number of sper-
matozoa bound to the zona pellucida was not different
between the oocytes incubated with the antibodies and
thoses incubated without any additive (P > 0.05; Table 1).

Experiment 2: GalTase masking with UDP Galactose
The number of spermatozoa bound to the zona pellucida
was not different after incubation with UDP Galactose or
UDP Glucose or without any additive, when using fresh or
frozen semen (P > 0.05; Table 2).

Experiment 3: GlcNAc masking with purified GalTase
Assessment of the GalTase fixation on the zona pellucida
In order to ascertain the binding of GalTase on the zona
pellucida, equine oocytes were incubated with GalTase or
no additive and then, with anti-GalTase antibodies or pre-
immune serum. On the oocytes incubated with GalTase
and anti-GalTase antibodies, the staining was intense on
the zona pellucida (figure 2A). For the other conditions,
no staining was observed on the oocytes (figure 2B, C, D).
Thus, GalTase binds to the zona pellucida of oocytes.

GlcNAc masking with purified GalTase
The number of spermatozoa bound to the zona pellucida
was not different after incubation with Galactosyltrans-
ferase or without any additive using fresh or frozen semen
(P > 0.05; Table 3).

Experiment 4: ZPC masking with anti-ZPC antibodies
Table 4 shows that the number of spermatozoa bound to
the zona pellucida was not different after incubation with
anti-ZPC antibody or without any additive, when using
fresh or frozen semen (P > 0.05; Table 4).

Discussion
As GalTase and GlcNAc are involved in sperm-zona pellu-
cida binding in bovine, but not in porcine, our aim was to
clarify the role of GalTase and GlcNAc in another ungu-
late. Our hypothesis was to know if GalTase and GlcNAc
are involved in sperm-zona pellucida interaction in the
horse. Our results show that these molecules are not
essential for in vitro equine sperm-zona pellucida binding.

In the large domestic mammals, such as bull, boar and
stallion, GalTase was localized on the plasma membrane
of periacrosomal region of the sperm head [6,11]. Our
experiments confirmed the GalTase localization on
equine sperm. In order to investigate the role of GalTase,
we analyzed sperm- zona pellucida binding when mask-
ing GalTase. The GalTase masking was performed with
UDP Galactose as previously described in the mouse and
in the pig or with anti-murine GalTase antibodies as pre-
viously described in the mouse and in the bull [2,10,9].
The percentage of sequence identity between horse and
murine GalTase is 88%. We checked that in our in vitro
conditions, the anti-GalTase antibodies previously used
by Larson and Miller [6] in the equine, Lopez et al. [2] and
Tengowski et al. [9] were actually able to bind the plasma
membrane of the equine spermatozoa. Our results
showed that, in our in vitro conditions, when using fresh
or frozen semen, the GalTase masking did not modify
sperm- zona pellucida binding, suggesting that GalTase
alone is not necessary for the binding of spermatozoa to
the zona pellucida in the horse. Previous reports demon-
strated that, in porcine, blocking GalTase did not affect
sperm- zona pellucida binding [10]. Thus, GalTase may
not be essential for sperm- zona pellucida binding in
equine and porcine species. On the contrary, in bovine,
during in vitro gametes co-incubation, GalTase plays a role
in the sperm-zona pellucida binding: GalTase masking
with anti-GalTase antibodies decreased the number of
spermatozoa bound to the zona pellucida [9]. Thus, the
involvement of GalTase in sperm-zona pellucida binding
may be different between species within the ungulates.

Table 1: Number of fresh or frozen spermatozoa bound to the zona pellucida per oocyte after incubation of spermatozoa with anti-
GalTase antibodies, preimmune serum or without any additive.

Groups Anti-Galactosyltransferase antibodies Preimmune serum No additive

Fresh semen No. Oocytes 31 28 28
Spermatozoa/oocyte
(mean ± SEM, n = 3)

99 ± 10 97 ± 9 112 ± 9

Frozen semen No. Oocytes 37 37 36
Spermatozoa/oocyte
(mean ± SEM, n = 2)

10 ± 1a 19 ± 2b 7 ± 1a

a, b: statistical difference between the columns in the same line (for fresh semen F = 0.72 and p = 0.49, for frozen semen F = 19.78 and p < 0.001)
n: number of replicates
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In the horse, we showed previously that GlcNAc residues
were present on the equine zona pellucida and co-local-
ized with the glycoprotein ZPC [12]. These data suggest
that GlcNAc may be linked to ZPC as observed in the
mouse [3,4]. In order to investigate the role of GlcNAc in
sperm- zona pellucida binding, we masked these residues
with purified GalTase as previously described in the
mouse [2]. In our in vitro conditions, we ascertained the
binding of purified GalTase to the ZP. We also masked the
ZPC protein with anti-ZPC antibodies, in order to
decrease the accessibility of the GlcNAc residues. We
ascertained previously the binding of anti-porcine ZPC
antibodies on the equine zona pellucida [12]. Moreover,
the percentage of sequence identity between horse and
porcine ZPC is 76%. Our results showed that, in our in
vitro conditions, when using fresh or frozen semen, the
GlcNAc masking did not modify the binding of spermato-
zoa to the zona pellucida. Similar results were observed in
the porcine species: removal of the GlcNAc residues by
incubation of oocytes with N-Acetylglucosaminidase did
not affect sperm- zona pellucida binding [10]. Thus, in
horse and pig, GlcNAc residues are not essential for gam-
etes interaction. On the contrary, in the mouse, incuba-
tion of oocytes with N-Acetylglucosaminidase decreased
the number of spermatozoa bound to the zona pellucida

[1]. In addition, the presence of purified GalTase pro-
duced a dose-dependant inhibition of sperm binding to
the zona pellucida [2]. In human and hamster, the pres-
ence of GlcNAc before or during in vitro male and female
gametes co-incubation, reduced the ability of spermato-
zoa to bind to the zona pellucida [7,8]. Thus, in human
and rodents, GlcNAc participates in the in vitro sperm-
zona pellucida binding, whereas in horse and pig, GlcNAc
may not be essential.

In summary, GalTase and GlcNAc residues are involved in
sperm-zona pellucida binding in human and rodents, as
well as bovine. On the contrary, GalTase and GlcNAc res-
idues are not essential in porcine and equine species. A
schematic tree of life (according to [20]) showing the
involvement of GalTase and/or GlcNAc in sperm-zona
pellucida binding in mammals is presented in Figure 3. In
human and rodents, the role of GalTase and GlcNAc in
sperm-zona pellucida binding seems to be maintained
during evolution. Among ungulates, the role of GalTase
and GlcNAc may have been lost during evolution in pigs
and horses, but not in cattle. To our knowledge, no data
are available about the involvement of GalTase and Glc-
NAc in sperm-zona pellucida binding in dog and cat. If
GalTase and GlcNAc residues are not essential in dog and

Table 2: Number of fresh or frozen spermatozoa bound to the zona pellucida of oocytes incubated with UDP Galactose, UDP Glucose 
or without any additive.

Groups UDP Galactose UDP Glucose No additive

Fresh semen No. Oocytes 35 34 33
Spermatozoa/oocyte
(mean ± SEM, n = 3)

42 ± 6 47 ± 7 64 ± 11

Frozen semen No. Oocytes 37 38 38
Spermatozoa/oocyte
(mean ± SEM, n = 2)

29 ± 3 30 ± 2 28 ± 2

No statistical difference was observed between the columns in the same line (for fresh semen F = 1.97 and p = 0.14, for frozen semen F = 0.17 and 
p = 0.84)
n: number of replicates

Equine oocytes incubated with GalTase and with anti-GalTase antibodies (A) or preimmune serum (B); equine oocytes incu-bated without GalTase and with anti-GalTase antibodies (C) or preimmune serum (D)Figure 2
Equine oocytes incubated with GalTase and with anti-GalTase antibodies (A) or preimmune serum (B); equine 
oocytes incubated without GalTase and with anti-GalTase antibodies (C) or preimmune serum (D). (Observa-
tion with an epifluorescent microscope at 400 × magnification).
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cat, the involvement of these molecules would have been
maintained only in cattle. Further studies are necessary to
clarify this point. Whether GalTase gene is subjected to
positive selection during evolution remains to be investi-
gated. Of note, genes involved in reproduction and in
sperm-egg interaction such as sperm-specific genes are
under fast evolution [21].

In equine species, GalTase and GlcNAc are not essential
for sperm-zona pellucida interaction, but other molecules
could be involved. For example, in the equine spermato-
zoa, HSP-7 could play a potential role in sperm- zona pel-
lucida interaction. This 14 KDa protein, isolated from
stallion seminal plasma, belongs to the spermadhesin
protein family, sharing 98% sequence identity with the
porcine seminal plasma protein AWN-1 [22]. Like its boar
homolog, HSP-7 is able to bind to the zona pellucida
[23]. Some other molecules, localized on the plasma
membrane of the spermatozoa in other mammals, could
play a role in the equine species: SED1, fertilin β and per-
oxiredosin 5 identified in the porcine species, ADAM2-
ADAM3 complex on the mouse spermatozoa, N-
Acetylglucosaminidase in the human spermatozoa and
Arylsulfatase A in the mouse or the pig [[24-27], [28] for
review, [29] for review]. On the zona pellucida, several
carbohydrate domains could be involved in sperm bind-
ing: O- and N-linked chains, the nonreducing terminal β-
galactosyl residues and the alpha D mannose residues

seem to participate in the mechanism of porcine sperm-
zona pellucida binding [30-33]. Moreover, sperm binding
could involve protein domains. In mouse, the sperm
receptor on the zona pellucida would be the ZPC
polypeptide because deglycosylated ZPC inhibited the
sperm- zona pellucida binding [34]. In human, binding of
sperm to zona proteins does not require the presence of
glycan moieties [35]. Finally, sperm-zona pellucida bind-
ing may involve a multimeric complex incorporating sev-
eral discrete molecular entities. For example, sperm from
GalTase-null mouse is still able to fertilize the oocytes in
vivo, though it is less able to undergo the acrosome reac-
tion, penetrate the zona pellucida and fertilize the oocyte
in vitro [36]. Mouse oocytes with lacking terminal GlcNAc
residues are able to be fertilized in vivo [37]. Thus, in vivo,
it is likely that compensatory processes enable sperm-ZP
binding due to redundant gamete receptors. Finally,
sperm binding could be dependent on a species specific
supra-molecular structure of the zona matrix, zona pellu-
cida proteins constituting a three-dimensional structure to
which sperm would bind [38].
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