Skip to main content


Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Figure 2 | Reproductive Biology and Endocrinology

Figure 2

From: Diets high in selenium and isoflavones decrease androgen-regulated gene expression in healthy rat dorsolateral prostate

Figure 2

Isoflavone-regulated gene expression. Relative steady state levels (mean ± SEM) of mRNA in the dorsolateral prostates of rats fed diets providing 10 or 600 mg/kg isoflavones, and 0 or 3.0 mg/kg supplemental Se for 200 days, were determined by real time RT-PCR of total RNA. Analysis of variance was used to determine significance of the main effects of isoflavones and supplemental Se. Fisher's pairwise comparisons within the ANOVA were used to test differences between pairs of dietary groups. Bars not sharing a common superscript are significantly different (p < 0.05) by Fisher's pairwise comparisons. Values are expressed relative to the expression level of the 0 Se supplement-10 mg/kg isoflavone group. A. Gucy1a3 gene expression. For the Gucy1a3 gene the reduction due to high isoflavone intake was highly significant (p < 0.001) while the main effect of Se supplementation was not (p = 0.472). B. Facl3 gene expression. For Facl2 (Acsl3) isoflavones also significantly (p = .001) reduced gene expression while supplemental Se had no effect (p = 0.995). C. Akr1c9 gene expression. For rat aldo-keto reductase type 1 (Akr1c9) a significant (p < 0.001) reduction was seen in rats consuming high isoflavone diets, while the main effect of supplemental Se was not significant (p = 0.172).

Back to article page