
RESEARCH Open Access

Differential gene expression profiling of
endometrium during the mid-luteal phase
of the estrous cycle between a repeat
breeder (RB) and non-RB cows
Ken-Go Hayashi1, Misa Hosoe2, Keiichiro Kizaki3, Shiori Fujii1, Hiroko Kanahara1, Toru Takahashi3

and Ryosuke Sakumoto1*

Abstract

Background: Repeat breeding directly affects reproductive efficiency in cattle due to an increase in services per
conception and calving interval. This study aimed to investigate whether changes in endometrial gene expression
profile are involved in repeat breeding in cows. Differential gene expression profiles of the endometrium were
investigated during the mid-luteal phase of the estrous cycle between repeat breeder (RB) and non-RB cows using
microarray analysis.

Methods: The caruncular (CAR) and intercaruncular (ICAR) endometrium of both ipsilateral and contralateral uterine
horns to the corpus luteum were collected from RB (inseminated at least three times but not pregnant) and non-RB
cows on Day 15 of the estrous cycle (4 cows/group). Global gene expression profiles of these endometrial samples
were analyzed with a 15 K custom-made oligo-microarray for cattle. Immunohistochemistry was performed to
investigate the cellular localization of proteins of three identified transcripts in the endometrium.

Results: Microarray analysis revealed that 405 and 397 genes were differentially expressed in the CAR and ICAR of
the ipsilateral uterine horn of RB, respectively when compared with non-RB cows. In the contralateral uterine horn,
443 and 257 differentially expressed genes were identified in the CAR and ICAR of RB, respectively when compared
with non-RB cows. Gene ontology analysis revealed that genes involved in development and morphogenesis were
mainly up-regulated in the CAR of RB cows. In the ICAR of both the ipsilateral and contralateral uterine horns,
genes related to the metabolic process were predominantly enriched in the RB cows when compared with non-RB
cows. In the analysis of the whole uterus (combining the data above four endometrial compartments), RB cows
showed up-regulation of 37 genes including PRSS2, GSTA3 and PIPOX and down-regulation of 39 genes including
CHGA, KRT35 and THBS4 when compared with non-RB cows. Immunohistochemistry revealed that CHGA, GSTA3
and PRSS2 proteins were localized in luminal and glandular epithelial cells and stroma of the endometrium.

Conclusion: The present study showed that endometrial gene expression profiles are different between RB and
non-RB cows. The identified candidate endometrial genes and functions in each endometrial compartment may
contribute to bovine reproductive performance.
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Background
Repeat breeder (RB) is generally defined as any cow that
has failed to conceive after at least three inseminations.
In both dairy and beef cattle herds, the presence of RB
cows can directly lead a large economic loss for pro-
ducers due to an extension of the length of the open
period and frequent artificial insemination (AI) [1]. In
addition to management problems such as inadequate
estrus detection and AI techniques, various physiological
problems of individual cows are one of major causes of
repeat breeding. For example, infections of uterus, cervix
and/or vagina, dysfunctions of uterus or ovary, obstructed
oviducts, defective oocytes and anatomical defects of the
reproductive tracts are involved in conception failure,
early embryonic death and endocrine disorders of RB
animals. [1]. It has been reported that embryo transfer is
effective to improve the fertility of RB cows and
heifers [2, 3]. On the other hand, a study of reciprocal
transfers of embryos between RB and virgin heifers
showed that a higher proportion of embryos transferred
from RB to virgin heifers than from virgin to RB heifers
survived at day 16 to 17, suggesting that the uterine envir-
onment in RB heifers is less suitable than in the virgins for
supporting a successful embryo development [4]. This be-
came more evident by transfer of identical demi-embryos
to RB and virgin recipient heifers resulted less number of
morphologically normal and elongated embryos in the RB
heifers than in the virgin heifers at day 15 [5]. About an
association between alteration of uterine environment and
repeat breeding, Katagiri et al. have demonstrated that
there is a close relationship between the endometrial
epidermal growth factor profile and diminished fertility of
RB cows [6].
The molecular mechanisms underlying endometrial

function may contribute to reproductive performance in
cattle. Increasing evidence using global gene expression
analysis has identified numerous differentially expressed
genes and related functional pathways in bovine endo-
metrium among highly fertile, subfertile and infertile
animal strains during estrous cycle or early pregnancy
[7–10]. Recent studies have also investigated gene
expression profiles under various conditions of the
bovine endometrium during the estrous cycle and/or
during early pregnancy using DNA microarray or RNA
sequencing [11–18]. In addition, microarray studies
have revealed that heat stress and steroid hormones
directly affect bovine endometrial gene expression
profiles [19, 20].
In ruminants, the endometrium shows structural and

physiological differences depending on the uterine com-
partments. The caruncular (CAR) areas are aglandular
and a limited area that forms placentomes by fusing with
the fetal extraembryonic membrane [21, 22]. On the
other hand, the intercaruncular (ICAR) areas contain

endometrial glands that synthesize and secrete sub-
stances or factors that are essential for survival and
development of the conceptus [23, 24]. A study that
directly compared the gene expression profiles of CAR
and ICAR during implantation in cows showed 1177
and 453 differentially expressed genes (DEG) were found
for cyclic and pregnant animals, respectively [13]. In
addition, it has been reported that tissues of the ipsilat-
eral uterine horn to the ovary with the corpus luteum
(CL) contain greater quantities of progesterone (P4) and
are more sensitive to P4 as compared with tissues on the
contralateral side [25]. Although a previous study dem-
onstrated that a few genes show differences in expres-
sion between ipsilateral and contralateral uterine horns
during the bovine estrous cycle [11], we consider that it
is important to analyze each compartment of the bovine
endometrium separately in order to understand enodo-
metrial function more comprehensively.
These previous studies suggest that alteration of the

endometrial function due to changes in gene expression
may contribute to their lower reproductive performance
in RB cows, whereas details of the molecular mecha-
nisms and biological pathways of their endometria still
need to be elucidated. Thus, we hypothesized that there
is a characteristic gene expression profile in the endo-
metrium of the RB cows. This study aimed to investigate
differences in gene expression profiles of the endomet-
rium between RB and non-RB cows during the mid-
luteal phase of the estrous cycle. In pregnant cattle,
maternal recognition of pregnancy occurs around Day
14–15 [26]. In addition, it has been reported that the
majority of early embryo losses in cattle have oc-
curred within 16 days of gestation (i.e. during the
mid-luteal phase) [27, 28]. Therefore, the basal gene
expression profiles of endometrium at mid luteal
phase would have the most important association
with reproductive performance.

Methods
Animals and sample collection
This study was carried out using non-lactating Japanese
Black cows at the institute’s ranch (age: 7.8 ± 0.9 years,
parity: 3.3 ± 0.8, open period from last parturition to first
AI in this study: 104 ± 9.6 month). Repeat breeder cows
(n = 4) were defined based on a previous study by Dochi
et al. [3]. Briefly, the RB cows had three characteristics
as follows: (1) detectable estrous behavior, but not
always normal estrous cycles; (2) not conceiving after
three or more inseminations following normal estrous
behavior; and (3) healthy uterus and ovaries, as deter-
mined by transrectal palpation. Non-RB cows (n = 4)
conceived within three inseminations. The non-RB cows
were confirmed to be pregnant by transrectal ultrason-
ography (HS-1500V; Honda Electronics. Co., Aichi,
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Japan) at 40 days after insemination, then abortion was
induced by a single intramuscular injection of 500 μg of
prostaglandin F2α (cloprostenol [Dalmazin]; Kyoritsu
Seiyaku. Co., Tokyo, Japan) followed by repeated normal
estrous cycles at least twice. Both RB and non-RB cows
were slaughtered on Day 15 of the estrous cycle (the day
of estrus was designated as Day 0) and the uterus and
both ovaries together were collected. Uterine horns were
identified as ipsilateral to the ovary containing the CL or
contralateral. We collected CAR and ICAR in the endo-
metrium from the middle area of each uterine horns.
The uterine horns were cut opened longitudinally using
scissors and CAR were carefully dissected first not to
include ICAR, subsequently, ICAR areas were cut off.
Collected samples were snap-frozen in liquid nitrogen
and stored at −80 °C until RNA extraction. Whole cross
section of the uterus for immunohistochemistry were
collected from the middle area of ipsilateral uterine horn
of all cows and fixed in 10% formalin (v/v), embedded in
paraffin wax, and then stored at 4 °C until use. All pro-
cedures in animal experiments were carried out in ac-
cordance with guidelines approved by the Animal Ethics
Committee of the National Institute of Agrobiological
Sciences for the use of animals (permission number:
H18-036).

Microarray analysis
Total RNA was extracted from each sample by acid gua-
nidinium thiocyanate-phenol-chloroform with ISOGEN
(Nippon Gene, Tokyo, Japan) according to the manufac-
turer’s instructions. All RNA samples were then treated
with TURBO DNase (TURBO DNA-free™ Kit, Thermo
Fisher Scientific, Waltham, MA, USA) according to the
manufacturer’s instructions to remove contaminating
genomic DNA. The quantity and quality of the total
RNA samples were assessed using a NanoDrop spectro-
photometer (ND-1000; NanoDrop Technology Inc., Wil-
mington, DE, USA) and an Experion automated
electrophoresis system with an Experion RNA StdSens
kit (Bio-Rad Laboratories, Hercules, CA, USA), respect-
ively. A custom-made bovine oligonucleotide microarray
with 15,000 unique genes (GPL9284) fabricated by
Agilent Technologies (Santa Clara, CA, USA) was used
in this study, which was performed as described previ-
ously [29]. Sixty-mer nucleotide probes for the custom-
ized microarray were synthesized on a glass slide. We
performed one-color microarray analysis. cDNA synthe-
sis, Cy3-labeled cRNA preparation, hybridization, and
the washing and scanning of array slides were performed
according to the Agilent one color microarray-based
gene expression analysis protocol. Briefly, 400 ng of total
RNA from each sample were reverse-transcribed into
cDNA using the Quick Amp Labeling Kit (Agilent
Technologies) with an oligo dT-based primer, and then

Cy3-labelled cRNA was prepared by in vitro transcrip-
tion. Labeled cRNA was purified with an RNeasy Mini
Kit (Qiagen, Hilden, Germany), and the concentration
and Cy3 dye incorporation (pmol Cy3/μg cRNA) were
measured with a spectrophotometer. Labeled cRNA
(600 ng) was fragmented and hybridized using the Gene
Expression Hybridization Kit (Agilent Technologies), ac-
cording to the manufacturer’s instructions. The arrays
were washed using a Gene Expression Wash Pack Kit
(Agilent Technologies) and scanned using an Agilent
Microarray Scanner. Feature Extraction ver. 9.5 was used
for image analysis and data extraction. Microarray data
from each sample were imported into GeneSpring 12
(Agilent Technologies) for further data characterization.
The GEO accession numbers are as follows. Platform:
GPL9284; samples: GSM2093338 to GSM2093369;
series: GSE79367. To identify putative biological func-
tions of DEG between RB and non-RB cows in each
endometrial compartment, we performed functional an-
notation chart analysis of the lists of DEG using the
Database for Annotation, Visualization and Integrated
Discovery (DAVID; http://david.abcc.ncifcrf.gov/) based
on Genebank Accession IDs [30]. Gene Ontology (GO)
Biological Process was selected as the functional annota-
tion category for the analysis with the threshold for
minimum gene counts belonging to an annotation term
set to 5 and an EASE score set to 0.05. The GO terms
were ranked according to their P-values describing the
significance of gene-term enrichment.

Quantitative real-time RT-PCR analysis
To validate the results of microarray analysis, we con-
firmed mRNA expression of the following representative
genes using quantitative real-time RT-PCR (qPCR)
analysis: (1) top two up- or down-regulated known genes
in each endometrial compartment; and (2) top five up-
or down-regulated known genes in the whole uterus.
Details of the procedures for single-strand cDNA syn-
thesis and qPCR were previously described [31]. Briefly,
50 ng of total RNA from the same sample used for the
microarray were reverse-transcribed into cDNA for
30 min at 48 °C using MultiScribeTM Reverse Transcript-
ase (Applied Biosystems, Foster City, CA, USA) with a
random primer, dNTP mixture, MgCl2 and RNase inhibi-
tor. After heat inactivation of the reverse transcriptase for
5 min at 95 °C, PCR and resulting relative increase in re-
porter fluorescent dye emission were monitored in real
time using an Mx3000P qPCR system (Agilent Technolo-
gies). Primers were designed using Primer Express com-
puter software program (Applied Biosystems) or Primer3
Plus software (www.bioinformatics.nl/primer3plus/) based
on the bovine sequences. The primer sequences for each
gene are listed in Table 1. Thermal-cycling conditions in-
cluded an initial sample incubation at 50 °C for 2 min and
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at 95 °C for 10 min, followed by 40 cycles at 95 °C for 15 s
and at 60 °C for 1 min. The cycle threshold value (CT)
indicate the quantity of the target gene in each sample.
The relative difference in initial amount of each mRNA
species (or cDNA) was determined by comparing the CT

values. The standard curves for each gene were generated

by serially diluting plasmids containing cDNA of each
individual gene to quantify the mRNA concentrations. We
confirmed the utility of the dissociation curve for detect-
ing the SYBR Green-based objective amplicon because
SYBR Green also detects double-stranded DNA including
Primer dimers, contaminating DNA and PCR products

Table 1 Details of the primers used for quantitative real-time RT-PCR analysis

Gene (GenBank accession number) Primer Sequence Position

CHGA Forward 5′-GCCGAAAGAGGTGACAGAAGA-3′ 538-558

(NM_181005) Reverse 5′-GTCTCCGTCCGAGTCTTCATC-3′ 637-617

CNGA1 Forward 5′-AGCAGAGATCGCCATCAATGT-3′ 1574-1594

(NM_174278) Reverse 5′-ACCAACTCCACCAACAGACCA-3′ 1663-1643

CPXM2 Forward 5′- ACCAGTGGATTGAAGTGGACG-3′ 581-601

(NM_001206057) Reverse 5′- TCACTCAGCCAGAGTGAGTTCCT-3′ 665-643

FAM83D Forward 5′- GGCTCCTACAGTTTTACATGGACAG-3′ 788-812

(NM_001083393) Reverse 5′-CAACCACTTGGCCAGACAGAA-3′ 863-843

FMO2 Forward 5′- AAGCCAGACATCCTTTCTCTCTTG -3′ 1459-1482

(NM_001163274) Reverse 5′- CCCAACCAGGCGATACTGATA-3′ 1554-1532

GSTA3 Forward 5′-AGAGCCATCCTCAGCTACCTTG-3′ 254-275

(NM_001077112) Reverse 5′-TCGATCCTGACTGTCTCCTTCA-3′ 327-306

IFIH1 Forward 5′-GGGACTAACAGCTTCACCAGGT-3′ 1764-1785

(XM_002685338) Reverse 5′-GGTAACTGCATCAAGATTGGCA-3′ 1860-1839

IGG1C Forward 5′-ACCAAGGTGGACAAGGCTGTT-3′ 274-294

(S82409) Reverse 5′-GGAAGATGAAGACAGAGGGTCCT-3′ 370-348

KCNA2 Forward 5′-TGGGTTCCCTATGTGCAATTG-3′ 1644-1664

(NM_001101195) Reverse 5′-TCCCGGTGGTAGAAGTAGTTGAA-3′ 1734-1712

KLHL24 Forward 5′- TTATTGGCAAGGAGGAGATGGT-3′ 901-922

(NM_001206196) Reverse 5′- TCTCAGATCAACAGCGCGAT-3′ 968-949

KRT35 Forward 5′- GAGACCGAGGTATCCATGCG-3′ 587-606

(NM_001076073) Reverse 5′- TTCTTGAGGCAGAGCAGCTC -3′ 726-707

LPLUNC1 Forward 5′- TCGGTGTGTTCAACCCTAAGC-3′ 1280-1300

(NM_174697) Reverse 5′- TTCTCGTTTGGCAGCAGGAT -3′ 1355-1336

PIPOX Forward 5′- ACAGCATTAACACCGAGTCGG-3′ 2140-2160

(NM_001014878) Reverse 5′- GGCAGTTATGAGCCTGTTTCCT-3′ 2210-2189

PLEKHA5 Forward 5′- GATGGATTCAAGAACGGAACG-3′ 2655-2675

(XM_002687754) Reverse 5′- TTCCACAGTCATCCTAGGTCGA-3′ 2739-2718

PRF1 Forward 5′-CAAGCCAAATGCTAATGTCCGT-3′ 408-429

(NM_001143735) Reverse 5′-AAAGCGACACTCCACTAAGTCCAT-3′ 531-508

PRSS2 Forward 5′-GTGAGGCTGGGAGAATACAACA-3′ 211-232

(NM_174690) Reverse 5′-ATGATCTTGGACGCATCGATGA-3′ 281-260

SLC39A2 Forward 5′- TTGGCTGCCTATTTGCCCT-3′ 355-373

(NM_001205648) Reverse 5′- CTGGAACCACTTGAAGCAGATG-3′ 428-407

THBS4 Forward 5′- CACTCTGAACGAGCTCTACGTGAT 3′ 331-354

(NM_001034728) Reverse 5′- GAAGAGTAAAGGCCGAAGATGGT-3′ 411-389

SUZ12 Forward 5′-GAACACCTATCACACACATTCTTGT-3′ 1565-1589

(NM_001205587) Reverse 5′-TAGAGGCGGTTGTGTCCACT-3′ 1694-1675
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from misannealed primers. Non-specific amplicons appear
as a peak separate from the desired amplicon peak. The
expression ratio of each gene to SUZ12 mRNA, which has
been demonstrated to be suitable for normalization in
bovine endometrial tissue [32], was calculated to adjust
for any variations in the qPCR reaction.

Immunohistochemistry
Immunohistochemistry for chromogranin A (CHGA),
glutathione S-transferase A3 (GSTA3) and trypsin 2
(PRSS2) was performed in the endometrium of both RB
and non-RB cows on Day 15 of the estrous cycle using
the automated Ventana HX System Discovery with a
DabMapKit (Roche Diagnostics, Basel, Switzerland) as de-
scribed previously in detail by our laboratory [33]. Uterine
cross sections 7-μm-thick were incubated at room
temperature with rabbit polyclonal anti-human CHGA
antibody (1.0 mg/ml, 20085, ImmunoStar Inc., Hudson,
WI, USA), rabbit polyclonal anti-human GSTA3 antibody
(0.5 mg/ml, orb5362, Biorbyt LLC, San Francisco, CA,
USA) or rabbit polyclonal anti-bovine PRSS2 antibody
(10 mg/ml, OASA07087, Aviva Systems Biology, San
Diego, CA, USA) diluted 1:100 (anti-CHGA), 1:20 (anti-
GSTA3) or 1:200 (anti-PRSS2) in Discovery Ab diluents
(Roche) for 12 h. The signals were detected using anti-

rabbit IgG-Biotin conjugate (Sigma) diluted 1:500 for 1 h.
Negative controls were performed using normal rabbit
IgG (0.5 mg/ml, 20304, Imgenex, San Diego, CA, USA)
diluted at concentrations equivalent to the primary anti-
bodies. The sections were observed with a Leica DMRE
HC microscope (Leica Microsystems, Wetzlar, Germany)

Table 2 Top 10 up- and down-regulated known genes in CAR of ipsilateral uterine horns of RB cows

GenBank accession ID Gene symbol Gene description Fold change P-value

Up-regulated genes

NM_001077112 GSTA3 Glutathione S-transferase, alpha 3 19.2 0.0016

NM_001206196 KLHL24 Kelch-like 24 (Drosophila) 3.0 0.0273

XM_588022 SPOPL Speckle-type POZ protein-like 2.8 0.0239

NM_001103317 ERCC2 Excision repair cross-complementing rodent repair deficiency, complementation group 2 2.5 0.0437

XM_002696037 CD300LG CD300 molecule-like family member g 2.2 0.0378

NM_001075908 STK33 Serine/threonine kinase 33 2.1 0.0351

NM_174607 SLC5A3 Solute carrier family 5 (inositol transporters), member 3 2.0 0.0126

NM_001192523 KCNMB4 Potassium large conductance calcium-activated channel, subfamily M, beta member 4 2.0 0.0307

NM_001083638 MEF2A Myocyte enhancer factor 2A 2.0 0.0290

XM_002695445 ZNF211 Zinc finger protein 211 2.0 0.0063

Down-regulated genes

NM_001206057 CPXM2 Carboxypeptidase X (M14 family), member 2 5.3 0.0496

NM_001076073 KRT35 Keratin 35 4.1 0.0279

NM_001101239 GRP Gastrin-releasing peptide 3.6 0.0319

NM_001245926 FGF9 Fibroblast growth factor 9 3.5 0.0066

NM_174145 PKP1 Plakophilin 1 (ectodermal dysplasia/skin fragility syndrome) 2.9 0.0021

NM_001076864 TMEM129 Transmembrane protein 129 2.6 0.0087

NM_001105478 SSLP1 Secreted seminal-vesicle Ly-6 protein 1 2.5 0.0474

NM_001077962 STAC SH3 and cysteine rich domain 2.4 0.0157

NM_001077945 PFN3 Profilin 3 2.4 0.0106

NM_001012685 FCAR Fc fragment of IgA, receptor for 2.3 0.0322

Table 3 Top 5 functional annotations of up- and down-regulated
genes in CAR of ipsilateral uterine horns

Term Count P-value

Up-regulated genes

GO:0048856 ~ anatomical structure development 11 0.0029

GO:0032502 ~ developmental process 11 0.0161

GO:0009987 ~ cellular process 31 0.0186

GO:0007275 ~multicellular organismal development 10 0.0230

GO:0009888 ~ tissue development 5 0.0246

Down-regulated genes

GO:0009987 ~ cellular process 95 <0.0001

GO:0007010 ~ cytoskeleton organization 8 0.0061

GO:0022610 ~ biological adhesion 11 0.0065

GO:0007155 ~ cell adhesion 11 0.0065

GO:0016043 ~ cellular component organization 23 0.0099
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and a Nikon Digital Sight DS-Fi1-L2 (Nikon Instruments
Co., Tokyo, Japan).

Statistical analysis
Microarray data were analyzed statistically with an un-
paired Student’s t-test and summarized using GeneSpring
12 (Agilent Technologies). The analysis of each uterine
compartment was performed by comparing the gene data-
sets which composed by microarray data of four cows in
each RB and non-RB group (n = 4/group). The analysis of
whole uterus was performed by comparing the gene
datasets which composed by microarray data of all four
compartments of four cows in each RB and non-RB group
(n = 16/group). The qPCR results were analyzed using a
Mann–Whitney U test. Results are presented as the
mean ± SEM. Statistical significance is considered to
be at P < 0.05.

Results
Gene expression profiles of CAR and ICAR in ipsilateral
uterine horns
A total of 405 and 397 genes were differentially expressed
in CAR and ICAR of the ipsilateral uterine horn of RB
cows, respectively when compared with non-RB cows

(adjusted P-value <0.05, fold-change >1.0). All data of
individual gene changes in CAR and ICAR are available in
Additional file 1: Tables S1 and S2, respectively. Out of
these, 128 genes were up-regulated and 277 genes were
down-regulated in CAR, whereas 169 genes were up-
regulated and 228 genes were down-regulated in ICAR.
The top 10 up- and down-regulated known genes in CAR

Table 4 Top 10 up- and down-regulated known genes in ICAR of ipsilateral uterine horns of RB cows

GenBank accession ID Gene symbol Gene description Fold change P-value

Up-regulated genes

NM_174697 LPLUNC1 Von Ebner minor salivary gland protein 3.7 0.0214

NM_001075162 FMO2 Flavin containing monooxygenase 2 (non-functional) 3.3 0.0348

NM_001166616 C5 Complement component 5 3.2 0.0429

XM_002692160 FOXA2 Forkhead box A2 3.0 0.0350

NM_181027 AKR1C4 Aldo-keto reductase family 1, member C4 (chlordecone reductase; 3-alpha
hydroxysteroid dehydrogenase, type I; dihydrodiol dehydrogenase 4)

2.9 0.0104

NM_001045878 GATM Glycine amidinotransferase (L-arginine:glycine amidinotransferase) 2.8 0.0472

NM_001206196 KLHL24 Kelch-like 24 (Drosophila) 2.6 0.0301

NM_001034419 HPGD Hydroxyprostaglandin dehydrogenase 15-(NAD) 2.6 0.0293

XM_001254052 ZNED1 DNA-directed RNA polymerase I subunit RPA12-like 2.4 0.0476

NM_001038096 CFI Complement factor I 2.4 0.0096

Down-regulated genes

NM_001034728 THBS4 Thrombospondin 4 3.4 0.0106

NM_001083393 FAM83D Protein FAM83D 2.6 0.0011

NM_001105411 GFRA1 GDNF family receptor alpha 1 2.4 0.0391

NM_001206057 CPXM2 Carboxypeptidase X (M14 family), member 2 2.3 0.0231

NM_178572 CA2 Carbonic anhydrase II 2.3 0.0474

NM_001099381 GALK1 Galactokinase 1 2.1 0.0466

NM_001035050 VTN Vitronectin 2.0 0.0464

NM_174745 MMP2 Matrix metallopeptidase 2 (gelatinase A, 72 kDa gelatinase, 72 kDa type IV collagenase) 1.9 0.0387

NM_001075730 STRA6 Stimulated by retinoic acid gene 6 1.9 0.0405

NM_174558 KCNK17 Potassium channel, subfamily K, member 17 1.9 0.0496

Table 5 Top 5 functional annotations of up- and down-regulated
genes in ICAR of ipsilateral uterine horns

Term Count P-value

Up-regulated genes

GO:0008152 ~metabolic process 38 0.0033

GO:0044237 ~ cellular metabolic process 29 0.0242

GO:0044249 ~ cellular biosynthetic process 15 0.0345

GO:0048878 ~ chemical homeostasis 5 0.0423

Down-regulated genes

GO:0008152 ~metabolic process 66 <0.0001

GO:0044237 ~ cellular metabolic process 8 <0.0001

GO:0009987 ~ cellular process 11 0.0001

GO:0044238 ~ primary metabolic process 11 0.0009

GO:0019538 ~ protein metabolic process 23 0.0023

Hayashi et al. Reproductive Biology and Endocrinology  (2017) 15:20 Page 6 of 18



are shown in Table 2. The most pronounced up- and
down-regulation of gene expression in RB cows was
observed for GSTA3 (Glutathione S-transferase, alpha 3;
19.2-fold) and CPXM2 (Carboxypeptidase X (M14 family),
member 2; 5.3-fold), respectively. The top five functional
annotations of DEG in the CAR of ipsilateral uterine
horns between RB and non-RB cows are listed in Table 3.
The GO terms involved in anatomical structure develop-
ment, developmental process, cellular process, multicellu-
lar organismal development and biosynthetic process
were highly enriched in up-regulated genes, whereas
the GO terms involved in cellular process, cytoskeleton
organization, biological adhesion, cell adhesion and cellu-
lar component organization were highly enriched in
down-regulated genes.
The top 10 up- and down-regulated known genes in

ICAR are shown in Table 4. The highest increase and
decrease in gene expression in RB cows were observed
in LPLUNC1 (Von Ebner minor salivary gland pro-
tein; 3.7-fold) and THBS4 (Thrombospondin 4; 3.4-
fold), respectively. Table 5 summarizes the top five
functional annotations of DEG in ICAR between RB
and non-RB cows. As a result of DAVID analysis,
only four GO terms related to metabolic process, cel-
lular metabolic process, cellular biosynthetic process

and chemical homeostasis were identified in up-
regulated genes. In down-regulated genes, the GO
terms involved in metabolic process, cellular meta-
bolic process, cellular process, primary metabolic
process and protein metabolic process were highly
enriched.

Table 6 Top 10 up- and down-regulated known genes in CAR of contralateral uterine horns of RB cows

GenBank accession ID Gene symbol Gene description Fold change P-value

Up-regulated genes

NM_001077112 GSTA3 Glutathione S-transferase, alpha 3 12.7 0.0080

NM_001014878 PIPOX Pipecolic acid oxidase 8.4 0.0261

NM_001024569 ELF5 E74-like factor 5 (ets domain transcription factor) 4.3 0.0173

NM_173981 ACAN Aggrecan 3.0 0.0420

NM_174404 NRXN1 Neurexin 1 3.0 0.0065

NM_001079771 SMOC1 SPARC related modular calcium binding 1 2.7 0.0104

NM_001034351 TNNC1 Troponin C type 1 (slow) 2.6 0.0142

NM_173945 NTS Neurotensin 2.6 0.0289

NM_001206196 KLHL24 Kelch-like 24 (Drosophila) 2.4 0.0345

NM_001046585 CCL14 Chemokine (C-C motif) ligand 14 2.4 0.0358

Down-regulated genes

NM_001205648 SLC39A2 Solute carrier family 39 (zinc transporter), member 2 2.7 0.0110

XM_002687754 PLEKHA5 Pleckstrin homology domain containing, family A member 5 2.2 0.0181

NM_001077962 STAC SH3 and cysteine rich domain 2.0 0.0456

NM_001098061 SQLE Squalene epoxidase 2.0 0.0268

NM_174145 PKP1 Plakophilin 1 (ectodermal dysplasia/skin fragility syndrome) 1.9 0.0304

NM_001098938 CYP39A1 Cytochrome P450, family 39, subfamily A, polypeptide 1 1.9 0.0262

NM_174489 VLDLR Very low density lipoprotein receptor 1.9 0.0063

NM_001034660 SLC5A11 Solute carrier family 5 (sodium/glucose cotransporter), member 11 1.8 0.0061

NM_001075803 FH Fumarate hydratase 1.8 0.0009

NM_001099399 CMTM3 CKLF-like MARVEL transmembrane domain containing 3 1.8 0.0434

Table 7 Top 5 functional annotations of up- and down-regulated
genes in CAR of contralateral uterine horns

Term Count P-value

Up-regulated genes

GO:0048518 ~ positive regulation of biological process 25 <0.0001

GO:0048522 ~ positive regulation of cellular process 22 <0.0001

GO:0009887 ~ organ morphogenesis 12 <0.0001

GO:0009653 ~ anatomical structure morphogenesis 16 0.0001

GO:0048856 ~ anatomical structure development 24 0.0002

Down-regulated genes

GO:0045859 ~ regulation of protein kinase activity 5 0.0029

GO:0043549 ~ regulation of kinase activity 5 0.0035

GO:0051338 ~ regulation of transferase activity 5 0.0040

GO:0043436 ~ oxoacid metabolic process 7 0.0075

GO:0019752 ~ carboxylic acid metabolic process 7 0.0075
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Gene expression profiles of CAR and ICAR in contralateral
uterine horns
A total of 443 and 257 genes were differentially
expressed in CAR and ICAR of the contralateral uterine
horn of RB cows, respectively when compared with non-
RB cows (adjusted P-value <0.05, fold-change >1.0). All
data of individual gene changes in CAR and ICAR
are available in Additional file 1: Tables S3 and S4,
respectively. Out of these, 333 genes were up-
regulated and 110 genes were down-regulated in
CAR, whereas 121 genes were up-regulated and 136
genes were down-regulated in ICAR. The top 10 up-
and down-regulated known genes in CAR are shown
in Table 6. Similar to CAR of the ipsilateral side, the
most pronounced up-regulated gene in RB cows was
GSTA3 (Glutathione S-transferase, alpha 3; 12.7-fold).
The most down-regulated gene in RB cows was
SLC39A2 (Solute carrier family 39 (zinc transporter),
member 2; 2.7-fold). Table 7 shows the top five functional
annotations of DEG in CAR between RB and non-RB
cows. Biological functions of positive regulation of bio-
logical process, positive regulation of cellular process,
organ morphogenesis, anatomical structure morphogen-
esis, and anatomical structure development were highly

enriched in up-regulated genes, whereas biological func-
tions of regulation of protein kinase activity, regulation of
kinase activity, regulation of transferase activity and
carboxylic acid metabolic process were highly enriched in
down-regulated genes.

Table 8 Top 10 up- and down-regulated known genes in ICAR of contralateral uterine horns of RB cows

GenBank accession ID Gene symbol Gene description Fold change P-value

Up-regulated genes

NM_001014878 PIPOX Pipecolic acid oxidase 8.8 0.0156

NM_174278 CNGA1 Cyclic nucleotide gated channel alpha 1 6.8 0.0390

NM_001033608 GSTA3 Glutathione S-transferase, alpha 3 6.6 0.0340

NM_001046400 MIF Macrophage migration inhibitory factor (glycosylation-inhibiting factor) 3.1 0.0118

NM_001046400 ZNRD1 Zinc ribbon domain containing 1 2.8 0.0400

NM_001206196 KLHL24 Kelch-like 24 (Drosophila) 2.6 0.0212

NM_001076517 LY6D Lymphocyte antigen 6 complex, locus D 2.5 0.0414

NM_001035473 GK5 Glycerol kinase 5 2.2 0.0210

NM_001075890 KLK10 Kallikrein-related peptidase 10 2.1 0.0445

NM_001083791 SH3BGRL2 SH3 domain binding glutamic acid-rich protein like 2 1.9 0.0030

Down-regulated genes

XM_002685338 IFIH1 Interferon induced with helicase C domain 1 4.0 0.0485

NM_001101195 KCNA2 Potassium voltage-gated channel, shaker-related subfamily, member 2 3.5 0.0204

NM_180998 LTF Lactotransferrin 2.9 0.0286

NM_001076843 SLC30A3 Solute carrier family 30 (zinc transporter), member 3 2.6 0.0289

NM_001076494 C8H8orf13 Chromosome 8 open reading frame 13 ortholog 2.5 0.0406

NM_001105411 GFRA1 GDNF family receptor alpha 1 2.5 0.0383

NM_174018 CFTR Cystic fibrosis transmembrane conductance regulator (ATP-binding cassette sub-family
C, member 7)

2.5 0.0316

NM_001077941 MARCH3 Membrane-associated ring finger (C3HC4) 3 2.5 0.0158

NM_173959 SCD Stearoyl-CoA desaturase (delta-9-desaturase) 2.0 0.0096

NM_174602 SLC2A1 Solute carrier family 2 (facilitated glucose transporter), member 1 1.9 0.0057

Table 9 Top 5 functional annotations of up- and down-regulated
genes in ICAR of contralateral uterine horns

Term Count P-value

Up-regulated genes

GO:0010467 ~ gene expression 17 0.0004

GO:0080090 ~ regulation of primary metabolic process 19 0.0013

GO:0060255 ~ regulation of macromolecule
metabolic process

19 0.0015

GO:0008152 ~metabolic process 38 0.0033

GO:0019222 ~ regulation of metabolic process 19 0.0040

Down-regulated genes

GO:0044238 ~ primary metabolic process 34 0.0023

GO:0006810 ~ transport 17 0.0025

GO:0051234 ~ establishment of localization 17 0.0026

GO:0051179 ~ localization 18 0.0027

GO:0008152 ~metabolic process 35 0.0028
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Table 10 Up- and down-regulated known genes in whole uterus of RB cows as compared with non-RB cows

GenBank accession ID Gene symbol Gene description Fold change P-value

Up-regulated genes

NM_174690 PRSS2 Protease, serine, 2 (trypsin 2) 12.3 0.0018

NM_001077112 GSTA3 Glutathione S-transferase, alpha 3 6.7 0.0002

NM_001014878 PIPOX Pipecolic acid oxidase 6.4 <0.0001

NM_174278 CNGA1 Cyclic nucleotide gated channel alpha 1 4.3 0.0024

S82409 IGG1C IgG1 heavy chain constant region 3.7 0.0081

BC112657 Vl1a Immunoglobulin lambda light chain variable region 3.7 0.0076

S82407 IgCgamma IgG2a heavy chain constant region 3.4 0.0347

NM_001025346 DAPL1 death associated protein-like 1 3.4 0.0075

NM_001080353 PI3 Peptidase inhibitor 3, skin-derived (SKALP) 3.2 0.0022

NM_001166616 C5 Complement component 5 2.8 0.0044

NM_001024569 ELF5 E74-like factor 5 (ets domain transcription factor) 2.8 0.0047

NM_001075910 CCDC113 Coiled-coil domain containing 113 2.7 0.0432

NM_173945 NTS Neurotensin 2.6 <0.0001

NM_001034351 TNNC1 Troponin C type 1 (slow) 2.5 0.0004

NM_001206196 KLHL24 Kelch-like 24 (Drosophila) 2.5 <0.0001

NM_001046400 ZNRD1 zinc ribbon domain containing 1 2.3 <0.0001

NM_001193109 SDCCAG8 Serologically defined colon cancer antigen 8 2.2 0.0001

NM_174010 CD36 CD36 molecule (thrombospondin receptor) 2.2 0.0073

XM_588022 SPOPL Speckle-type POZ protein-like 2.2 <0.0001

NM_173880 H4 Histone H4 2.1 0.0033

NM_001098155 ZNF322A Zinc finger protein 322A 2.1 0.0005

NM_001035380 GC Group-specific component (vitamin D binding protein) 2.0 0.0269

NM_001035473 GK5 Glycerol kinase 5 2.0 0.0003

Down-regulated genes

NM_181005 CHGA Chromogranin A (parathyroid secretory protein 1) 3.9 0.0005

NM_001076073 KRT35 Keratin 35 3.3 0.0011

NM_001034728 THBS4 Thrombospondin 4 3.2 <0.0001

NM_001206057 CPXM2 Carboxypeptidase X (M14 family), member 2 3.1 <0.0001

NM_001143735 PRF1 Perforin 1 (pore forming protein) 3.0 0.0090

NM_001002763 CDH1 Cadherin 1, type 1, E-cadherin (epithelial) 2.9 0.0097

NM_176851 FUT5 Fucosyltransferase 5 (alpha (1,3) fucosyltransferase) 2.7 0.0038

XM_002685338 IFIH1 Interferon induced with helicase C domain 1 2.5 0.0040

NM_001081734 MOCS3 Molybdenum cofactor synthesis 3 2.5 0.0465

NM_174039 DPP4 Dipeptidyl-peptidase 4 2.4 0.0158

NM_001102080 CSNK1D Casein kinase 1, delta 2.3 0.0144

NM_001102060 TBC1D10C TBC1 domain family, member 10C 2.3 0.0391

NM_001081539 C11H2orf49 Chromosome 11 open reading frame, human C2orf49 2.3 0.0354

AF068848 VpreB Surrogate light chain 2.3 0.0204

NM_001127317 MIC1 Major histocompatibility class I related protein 2.2 0.0135

NM_205801 CLDN3 Claudin 3 2.2 0.0196

NM_001077887 CLASRP CLK4-associating serine/arginine rich protein 2.2 0.0245

NM_174513 ADAP1 ArfGAP with dual PH domains 1 2.1 0.0169

NM_001105478 SSLP1 Secreted seminal-vesicle Ly-6 protein 1 2.1 0.0004
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Table 8 shows the top 10 up- and down-regulated
known genes in ICAR. The highest increase and
decrease in gene expression in RB cows were found for
PIPOX (Pipecolic acid oxidase; 8.8-fold) and IFIH1
(Interferon induced with helicase C domain 1; 4.0-fold),
respectively. The top five functional annotations of DEG
in the ICAR of contralateral uterine horns between RB
and non-RB cows are listed in Table 9. The GOs con-
taining genes regulating gene expression, regulation of
primary metabolic process, regulation of macromolecule
metabolic process, metabolic process and regulation of
metabolic process were highly enriched in up-regulated
genes. In down-regulated genes, the GO terms involved
in primary metabolic process, transport, establishment
of localization, localization and metabolic process were
highly enriched.

Gene expression profiles of whole uterus
To characterize differential global gene expression
profiles in the endometrium of RB and non-RB cows not
only locally in each endometrial compartment but also
globally in the uterus, we also performed bioinformatics
analysis by combining the microarray gene data sets of
four endometrial compartments in each cow as whole
uterus. A total of 76 genes were found to be differen-
tially expressed in the whole uterus of RB cows when
compared with non-RB cows (adjusted P-value <0.05,
fold-change >2.0). Among these, 37 genes were up-
regulated and 39 genes were down-regulated. All up-
and down-regulated known genes in the whole uterus
are shown in Table 10. The most pronounced up-
and down-regulated gene expression in RB cows was
found for PRSS2 (Protease, serine, 2 (trypsin 2); 12.3-fold)
and CHGA (Chromogranin A (parathyroid secretory
protein 1); 3.9-fold), respectively.

Validation of gene expression by qPCR
We selected the top two and top five up- and down-
regulated known genes in each endometrial compart-
ment and whole uterus between RB and non-RB cows,
respectively to validate the changes in gene expression
obtained from microarray analysis by qPCR. qPCR
analysis clearly confirmed the microarray results in each
endometrial compartment except for FAM83D (Fig. 1h),
SLC39A2 (Fig. 2c), PLEKHA5 (Fig. 2d) and IFIH1
(Fig. 2g). In the whole uterus, the microarray results
were confirmed except for PRF1 (Fig. 3j).

Protein localization of CHGA, GSTA3 and PRSS2 in the
endometrium of RB and non-RB cows
Figure 4 shows the results of immunohistochemistry for
CHGA, GSTA3 and PRSS2 in the endometrial tissues of
ipsilateral uterine horns of RB and non-RB cows on Day
15 of the estrous cycle. In both RB and non-RB cows, a
distinct CHGA signal was found in the uterine luminal
epithelium and a part of uterine stroma under the epi-
thelium (Fig. 4a and c). CHGA protein was also detected
moderately in the glandular epithelium in both RB and
non-RB cows and in the uterine stroma in RB cows
(Fig. 4b and d). A positive GSTA3 signal was detected in
the uterine luminal, uterine stroma and glandular epithe-
lium in RB cows (Fig. 4e and f), whereas positive staining
was not observed in non-RB cows (Fig. 4g and h). PRSS2
protein was moderately detected in the uterine luminal
epithelium and glandular epithelium, and partially intense
staining was observed in the uterine stroma under the epi-
thelium in both RB and non-RB cows (Fig. 4i,j,k and l).

Discussion
This is the first study to investigate global gene expres-
sion profiles of endometrium between RB and non-RB
cows in both each endometrial compartments and the
whole uterus. As we hypothesized, the microarray
analysis identified a number of characteristic up- and
down-regulated genes specific to each of four endomet-
rial compartments of RB cows. The RB cows used in this
study had experienced pregnancy and then became
infertile. Thus, long-term infertility in the RB cows may
be associated with alteration of endometrial function.
Our results support that alteration of uterine environ-
ment, which may be induced by changes in the endo-
metrial gene expression, could be a possible involvement
of low fertility in the RB cattle.
Even though the endometrial gene expression profiles

were regionally different in the endometrial compart-
ments, GSTA3 was identified as the most pronounced
up-regulated gene in the CAR of both ipsilateral and
contralateral uterine horn. GSTA3 is a member of the
class Alpha GST isoenzymes which exert a critical role
in the detoxification of electrophilic decomposition
products generated by reactive oxygen species (ROS)
and metabolism of xenobiotics through glutathione con-
jugation with electrophilic compounds [34–37]. Similar
to our results, a recent study has demonstrated that
cows with low endometrial receptivity of the embryo

Table 10 Up- and down-regulated known genes in whole uterus of RB cows as compared with non-RB cows (Continued)

NM_001077962 STAC SH3 and cysteine rich domain 2.1 <0.0001

XM_002687754 PLEKHA5 Pleckstrin homology domain containing, family A member 5 2.1 0.0003

NM_001101239 GRP Gastrin-releasing peptide 2.1 0.0059

NM_001205648 SLC39A2 Solute carrier family 39 (zinc transporter), member 2 2.0 0.0001
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Fig. 1 qPCR analysis of top two up- and down-regulated known genes in ipsilateral uterine horns between RB and non-RB cows for validation of
the gene expression changes obtained from microarray analysis. a, b, c and d CAR and e, f, g and h ICAR. a, b, e and f up-regulated known genes
in RB cows when compared with non-RB cows. c, d, g and h) down-regulated known genes in RB cows when compared with non-RB cows. The
expression of mRNA was normalized to the expression of SUZ12 measured in the same RNA preparation. Data are shown as the mean ± SEM.
Asterisks show significant differences (P < 0.05)
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Fig. 2 qPCR analysis of top two up- and down-regulated known genes in contralateral uterine horns between RB and non-RB cows for validation
of the gene expression changes obtained from microarray analysis. a, b, c and d CAR and e, f, g and h ICAR. a, b, e and f up-regulated known
genes in RB cows when compared with non-RB cows. c, d, g and h down-regulated known genes in RB cows when compared with non-RB
cows. The expression of mRNA was normalized to the expression of SUZ12 measured in the same RNA preparation. Data are shown as the
mean ± SEM. Asterisks show significant differences (P < 0.05)
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Fig. 3 (See legend on next page.)
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show a higher expression of several oxidative stress-
response genes in the endometrium compared with
highly receptive cows at Day 7 of the estrous cycle [7].
Both oxidative stress and xenobiotics are directly respon-
sible for not only an increase in embryonic mortality but
also an alteration of uterine function inducing severe
gynecological diseases such as endometriosis and pre-
eclampsia [38–42]. We suppose that the CAR of RB cows
may be accompanied by enhanced detoxification and
elimination of ROS and xenobiotics. Another important
contribution of GSTA3 isomerase is in the biosynthesis of
steroids, especially testosterone and P4 in active steroido-
genic tissues [43]. Progesterone inhibits endometrial epi-
thelial cell proliferation, adenogenesis and uterine gland
development [44, 45]. A previous study showed that RB

cows had higher concentrations of P4 receptor in the
endometrium than non-RB cows, implying the existence
of a local hormonal imbalance in RB cows [46]. In the
present study, the GSTA3 was also highly expressed in the
ICAR of RB cows compared with non-RB cows. In
addition, immunohistochemistry revealed that a strong
signal of GSTA3 protein was detected in the uterine
luminal and glandular epithelium and stroma in RB cows.
GSTA3 may also be involved in ICAR functions in RB
cows by mediating steroidogenesis.
Gene ontology analysis using DAVID revealed that a

number of biological processes and functions were
different between RB and non-RB cows in both CAR and
ICAR. In the CAR of RB cows, genes involved in develop-
ment and morphogenesis were mainly up-regulated.

(See figure on previous page.)
Fig. 3 qPCR analysis of top five up- and down-regulated known genes in whole uterus between RB and non-RB cows for validation of the gene
expression changes obtained from microarray analysis. a, b, c, d, e up-regulated known genes in RB cows when compared with non-RB cows.
f, g, h, i, j down-regulated known genes in RB cows when compared with non-RB cows. The expression of mRNA was normalized to the expression
of SUZ12 measured in the same RNA preparation. Data are shown as the mean ± SEM. Asterisks show significant differences (P < 0.05)

Fig. 4 Representative photomicrographs of protein localization of CHGA, GSTA3 and PRSS2 in endometrial tissue from RB and non-RB cows on
Day 15 of estrous cycle. Protein localization of (a, b, c and d) CHGA, (e, f, g and h) GSTA3 and (i, j, k and l) PRSS2 in endometrial tissue from RB
(a, b, e, f, i and j) and non-RB (c, d, g, h, k and l) cows was detected by immunohistochemistry. Seven-micrometer sections of bovine endometrial
tissues of ipsilateral uterine horns on Day 15 of estrous cycle were immunostained with anti-human CHGA, anti-human GSTA3 and anti-bovine
PRSS2 polyclonal antibodies. Positive staining of CHGA and PRSS2 were found in the uterine luminal epithelium, uterine stroma and glandular
epithelium of both RB and non-RB cows. GSTA3 was detected in the uterine luminal, uterine stroma and glandular epithelium in RB cows,
whereas positive staining was not observed in non-RB cows. No signal was detected in the negative control sections using normal rabbit IgG
(inserted panels). LE, luminal epithelium; US, uterine stroma; GE, glandular epithelium. Scale bars = 50 μm
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These genes included 14 and 9 genes regulating embryo
development and vasculature development, respectively.
The CAR eventually attaches with the trophoblast to give
rise to the maternal side of the placentome in pregnant
animals [22, 23]. Up-regulation of the genes involved in
embryo and vasculature development in the CAR may
contribute to the success of implantation and following
placental formation at the maternal-fetal interface. An
increase in the regulation of these genes in the CAR may
be one of the characteristics of the RB uterus. In the ICAR
of both the ipsilateral and contralateral uterine horns,
genes related to metabolic processes were predominantly
enriched in both up- and down-regulated genes in RB
cows compared with non-RB cows. The ICAR is a specific
compartment containing the uterine glands, which
synthesize and secrete various metabolites and histotroph
required for estrous cyclicity or development of the
conceptus [24]. Alterations of endometrial metabolic
processes in RB cows may seriously affect maintenance of
uterine function.
The DAVID analysis also revealed that the CAR of the

ipsilateral uterine horn of RB cows is characterized by
down-regulation of a number of genes associated with
cytoskeleton organization, cell adhesion and cellular
component organization compared with non-RB cows.
Previous global gene expression studies in bovine endo-
metrium showed that profiles of the genes assigned to
these functional categories changes during estrous cycle
and peri-implantation [11–13], suggesting that these
biological functions may be responsible for the regulation
of uterine environment. Additionally, the endometrial cell
adhesion molecules play a role in conceptus-endometrium
attachment at implantation. A direct comparison of cyclic
and pregnant endometrium found cell adhesion and cyto-
skeleton organization molecules affected by pregnancy in
both CAR and ICAR [13]. Around the implantation
period, the ipsilateral uterine horn is the site of first occur-
rence of conceptus-endometrial contact and modification
of cytological character was seen exclusively on the CAR
[47, 48]. Therefore, the lower expression of genes regulat-
ing cytoskeleton organization and cell adhesion in CAR of
RB cows may be associated with inadequate endometrial
responsiveness resulting in implantation failure.
CPXM2 was included in the top 10 down-regulated

genes in both CAR and ICAR of the ipsilateral uterine
horn. Previous microarray studies found no differences
in CPXM2 expression in the bovine endometrium be-
tween highly fertile and poor fertile, and between highly
fertile and subfertile cows at Day 14 of the estrous cycle
[9], while expression decreasing at Day 7 compared to
Day 3 of estrus in cows with low embryo receptivity [7].
CPXM2 is assumed to be more sensitive to P4 or some
CL factors in a poorly fertile endometrium that includes
the RB. Although the specific roles of CPXM2 remain

unknown, DAVID analysis has assigned it belongs to the
biological process of proteolysis and cell adhesion. Thus,
CPXM2 may be related to alteration of endometrial cell
adhesion in RB cows, as well as to the above described
cell adhesion related genes that are down-regulated in
the CAR of the ipsilateral uterine horn of RB cows.
KLHL24 (Kelch-like 24) was the only gene included in

the top 10 up-regulated genes in all four endometrial
compartments. A member of the KLHL family includ-
ing KLHL24 is known to be involved in ubiquitination
[49, 50]. It has been reported that lower expression of
genes associated with ubiquitination in high fertile as
compared with subfertile cows [9]. Although the specific
roles of KLHL24 have not yet been elucidated, an increase
in oxidative stress stimulated KLHL24 expression in
human fibroblast cells [51], leading us to speculate that
this gene is up-regulated to counteract cytoskeleton de-
struction by ROS- induced cell damage and/or to degrade
proteins in cells exposed to ROS by ubiquitination reac-
tion. Therefore, high expression of KLHL24 in RB cows
compared with non-RB cows support the possibility that
the endometrium of RB cows is under oxidative stress.
However, it has been reported that the level of KLHL24
gene expression at Day 14 of the estrous cycle shows no
significant difference among high fertile, low fertile and
infertile cows [9]. The functional contribution of endo-
metrial KLHL24 in bovine fertility remains unclear.
Analysis of the combined gene data sets of the four

endometrial compartments revealed gene expression
profiles of the whole uterus. PRSS2 and CHGA were the
most pronounced up- and down-regulated genes,
respectively. PRSS2 is a member of the trypsin family of
serine proteases and degrades type I collagen directly or
indirectly by activating several procollagenolytic matrix
metalloproteinases (MMPs) [52, 53]. CHGA works as a
pro-hormone for pancreastatin, vasostatin and catestatin
[54–56]. Full-length CHGA and vasostatin act as anti-
angiogenic factors to inhibit two potent angiogenic
factors, basic fibroblast growth factor (bFGF) and vascu-
lar endothelial growth factor, while CHGA cleaved by
thrombin and catestatin promote angiogenesis by indu-
cing the release of bFGF from vascular endothelial cells
[57]. In the present study, we found that both PRSS2
and CHGA proteins were localized in the luminal and
glandular epithelium and in the stroma of the endomet-
rium. These localizations coincide with the tissue site
of gelatinase activity of MMP-2 and the localization of
MMPs and bFGF in the bovine endometrium [58–60],
suggesting paracrine and autocrine actions of PRSS2
and CHGA with MMPs and bFGF in the bovine endo-
metrium. In addition, genes involved in cell death
(DAPL1 and PRF1) or cell attachment (CD36, CDH1,
CPXM2, KRT35 and THBS4) were also differentially
expressed between RB and non-RB cows. Although
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further studies are needed to clarify, the endometrium
of RB cows might not only be involved in the promo-
tion of tissue remodeling and imbalance of angiogenesis
but also in the degradation of cell renewal and tissue
structure.
In cattle, around Day 15 of pregnancy is a stage of the

beginning of conceptus elongation and maternal recog-
nition of pregnancy [26]. A recent RNA-seq study
identified numerous conceptus-expressed ligands that
interact with corresponding receptors expressed on the
endometrium and vice versa at Day 16 of pregnancy in
cattle [61]. In the present study, some genes of endomet-
rium expressed ligands (CCL4, CCL14, COL1A2, EDN1,
F2, MMP2, THBS4 and TIMP3) and receptors (ACVR2B,
BMPR2, CD4, CD36, IGF2R, IL10RB, KDR, TNFRSF25
and VLDLR) that interact with conceptus reported by
Mamo et al. were differentially expressed between RB
and non-RB cows. In addition, other genes encoding
growth factors (FGF9 and GDF7) and cytokines (CCL8,
CD14 and CD53) were down-regulated in the RB cows
as compared with non-RB cows. Although the functional
role of these two growth factors in bovine endometrium
remains to be elucidated, FGF9 induces endometrial
stromal cell proliferation [62]. Up-regulation of FGF9
and GDF7 expressions were detected in equine and/or
swine pregnant endometrium and may be implicated in
embryo-maternal communication at early pregnancy
[63, 64]. The receptors of these growth factors were
expressed in not only endometrium but also conceptus
at Day 16 of pregnancy in cattle [61]. Therefore, alter-
ation of the expression of these ligands and receptors in
the RB cows may affect conceptus development and ma-
ternal recognition of pregnancy if a conceptus presents
in the RB cows.

Conclusion
The results of the present study support the hypothesis
that endometrial gene expression profiles are different
between RB and non-RB cows. In RB cows, characteris-
tic gene expression was identified in both the CAR and
ICAR of both ipsilateral and contralateral uterine horns.
The enriched GO terms of these genes were related to
cell adhesion and morphogenesis in the CAR and
metabolism in the ICAR. These results suggest that local
regulation of molecular mechanisms in each endometrial
compartment may contribute to normal uterine physi-
ology. Therefore, the identified candidate endometrial
genes and functions are likely to be involved in bovine
reproductive performance. The present study could
provide an information base for understanding under-
lying molecular pathogenesis and developing a treatment
of repeat breeding in cattle from the point of view of
endometrial function.
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Additional file 1: Table S1. List of up- and down-regulated genes in
CAR of ipsilateral uterine horns of RB cows (n = 4) on Day 15 of the
estrous cycle as compared with non-RB cows (n = 4). Table S2. List of
up- and down-regulated genes in ICAR of ipsilateral uterine horns of RB
cows on Day 15 of the estrous cycle as compared with non-RB cows.
Table S3. List of up- and down-regulated genes in CAR of contralateral
uterine horns of RB cows on Day 15 of the estrous cycle as compared
with non-RB cows. Table S4. List of up- and down-regulated genes in
ICAR of contralateral uterine horns of RB cows on Day 15 of the estrous
cycle as compared with non-RB cows. (XLSX 254 kb)
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ICAR: Intercaruncular; IFIH1: Interferon induced with helicase C domain 1;
IGF2R: Insulin like growth factor 2 receptor; IL10RB: Interleukin 10 receptor
subunit beta; KDR: Kinase insert domain receptor; KLHL24: Kelch-like 24;
KRT35: Keratin 35; LE: Luminal epithelium; LPLUNC1: Von Ebner minor salivary
gland protein; MMP: Matrix metalloproteinase; P4: Progesterone;
PIPOX: Pipecolic acid oxidase; PLEKHA5: Pleckstrin homology domain
containing, family A member 5; PRF1: Perforin 1; PRSS2: Trypsin 2;
qPCR: Quantitative real-time RT-PCR; RB: Repeat breeder; ROS: Reactive
oxygen species; SLC39A2: Solute carrier family 39 (zinc transporter), member
2; SUZ12: Suppressor of zeste 12; THBS4: Thrombospondin 4; TIMP: Tissue
inhibitor of metalloproteinase; TNFRSF25: Tumor necrosis factor receptor
superfamily member 25; US: Uterine stroma; VLDLR: Very low density
lipoprotein receptor
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