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Abstract

Background: The non-lethal collection of sperm from live males is an important component for multiple captive-
breeding techniques, including assisted reproductive technology (ART) protocols, sperm cryopreservation and in
vitro fertilization. However, in amphibians, the type and amount of hormone necessary to induce spermiation can
be highly variable, even among closely related species. We are unaware of any studies that have examined the
spermiation response to exogenous hormones across highly differentiated populations within a species.

Methods: We examined variation in sperm viability and production in response to the hormone LHRH among four
divergent populations of the Red-eyed Treefrog (Agalychnis callidryas). We hypothesized that these highly differentiated
populations would show variability in sperm count and viability in response to two dosages, 2 μg/g and 4 μg/g, of the
hormone LHRH. We collected spermic urine 3 h post injection (PI). We then examined variation in spermiation at 3, 7, 12,
and 24 h PI of LHRH for two allopatric populations that previously showed evidence of premating behavioral isolation.

Results: One population of Red-eyed Treefrog exhibited reduced sperm viability but not count in response to the
hormone LHRH compared to all other populations. In addition, we found peak viability at 3 h PI for the allopatric
population comparison. There was no difference in sperm production within or between populations at 3, 7, 12,
or 24 h PI. For both studies, intrapopulation variation was high.

Conclusion: ART often focuses on threatened species with small, isolated populations, which could evolve
localized differences due to the evolutionary process of drift and selection. The high variation in response
and the population-level differences in sperm viability we observed demonstrate that practitioners of ART
should consider the possibility of divergent responses to hormones which may affect study design and
animal receptivity to ART protocols.

Background
Amphibians are facing extinction rates that exceed those
of birds, mammals, or reptiles [1]. Since 1980, at least
165 species of amphibians have gone extinct and
approximately 30% of the amphibians assessed by the
International Union for Conservation of Nature (IUCN)
are currently threatened with extinction [1–3]. Assisted
reproductive technologies (ART) have been increasingly
implemented in captive-breeding settings to augment
amphibian populations. Many ART protocols for
amphibians combine traditional breeding with laboratory
methods (e.g., the use of hormones) for successful

breeding and induction of viable oocytes and sperm for
cryopreservation and/or in vitro fertilization [4, 5]. His-
torically, ART protocols used sperm that were collected
from testes macerates, thus sacrificing males [6–8], how-
ever, within the past 20 years, exogenous hormones have
been used to obtain sperm non-invasively [9]. To date,
at least 12 species of anurans representing seven families
have been bred using ART [10].
One of the most common and effective hormones used

in amphibian reproductive technologies is gonadotropin-
releasing hormone (GnRH, known in the ART literature
as luteinizing-hormone releasing hormone [LHRH]; [11]).
Although LHRH has proven useful in ART in anurans,
the dose of hormone required to induce spermiation or
ovulation and the latency to spermiation varies by orders
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of magnitude among frog families [10]. For example, a
dosage of 0.28–0.58 μg/g LHRH is sufficient to promote
spermiation in leptodactylids [12], whereas a 2 μg/g
LHRH dose is more effective for myobatrachids [13].
Further, the dose for closely related species within a genus
can vary [9], as can the optimal time post-hormone
administration for collection of gametes [10].
Currently, hormonal ART protocols are generally

developed and optimized for species, not populations,
regardless of how genetically or geographically isolated
the source populations may be. However, population-
level differences may result in variable responses to
exogenous hormones that may mask or limit the efficacy
of a protocol. To our knowledge, there has been no at-
tempt to understand whether the response to hormones
varies among populations within a species. We thus
assessed the spermiation response to LHRH in highly
divergent intraspecific populations of Red-eyed Treefrogs
(Agalychnis callidryas).
The Red-eyed Treefrog is a broadly distributed

Neotropical phyllomedusine frog [14]. This species
exhibits genetic and phenotypic divergence across popu-
lations [15–17], including strong differentiation in color
pattern and body size [17], skin antimicrobial peptides
[18], and advertisement calls (unpubl. data). Allopatric
populations show assortative mating for local males,
indicating that some premating behavioral reproductive
isolation has evolved [19]. In addition, offspring of indi-
viduals from parapatric or allopatric crosses have lower
fitness than parental crosses (unpubl. data). However,
genetic analyses using nuclear and mitochondrial DNA

indicate that these populations represent a single intra-
specific lineage [15, 16].
Red-eyed Treefrogs are well suited for testing the

hypothesis that the extensive phenotypic and genetic diver-
gence among populations is associated with population-
level physiological differences. We used exogenous LHRH
to test the effects of hormone dosage and time post-
injection on sperm viability and count. We predicted that if
reproductive physiology has shifted with other divergent
traits, ejaculate characteristics would vary among popula-
tions and over time.

Methods
Animal collection, and housing
Adult frogs were collected from Costa Rica in the sum-
mer of 2014 and transported to the California State Uni-
versity, Northridge (CSUN) vivarium. To ensure that all
males were reproductively mature and receptive
collected all individuals in a natural breeding aggrega-
tion. Animals were housed at a constant temperature of
26.7 ± 3.0 °C and under a 12:12 h photocycle; this
temperature and light cycle reflects the natural environ-
mental conditions of their breeding season. We collected
males from each of four populations that vary in the
extent of genetic and phenotypic differentiation across
their range (Fig. 1). We housed frogs by population,
grouping up to four individuals per each screen-topped
glass aquarium (50.8 × 27.9 × 33.0 cm). Tanks were lined
with 2 cm of pea gravel (Silver Rock Shallow Creek
Aquarium Gravel, San Antonio, Texas), and included a
plastic plant (Petco Araceae Terrarium Plant Reptile

Fig. 1 Four geographically isolated populations near the southern end of the range of A. callidryas. Bijagual (9.5188, -84.3774) and Pavones
(8.4204, -83.1069) are allopatric to La Selva (10.4327, -84.0080) and Gandoca (9.6332, -82.6556), separated by the Talamancan mountain range
(shown in black). ASTER Costa Rica image was retrieved from https://lpdaac.usgs.gov, maintained by the NASA EOSDIS Land Processes Distributed
Active Archive Center. The data product for the image was provided by NASA. Inset: The geographic range of A. callidryas in Central America
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Décor, San Antonio, Texas), water dish (77.0 ml), and a
fogger system (ZooMed ReptiFogger, San Luis Obispo,
CA) which was run continuously, providing a mean rela-
tive humidity of 80%. We rinsed the gravel and fed the
frogs to satiation twice weekly with 2-weeks old crickets
(Acheta domestica; Flukers, Port Allen, LA) gut loaded
with calcium.

Hormone administration
We diluted hormone (LHRHa; Des-GLY10, D-ALA6)-
LH-RH ethylamide ACE, an analog of luteinizing
hormone-release hormone, Sigma Aldrich, Milwaukee,
WI) in simplified amphibian Ringer’s solution (SAR;
113 mM NaCL, 2 mM KCl, 1.35 mM CaCl2, 1.2 mM
NaHCO3) to create a 0.8 mg/ml dilution of hormone to
SAR. Immediately prior to injections, we weighed each
frog and administered hormone adjusted for each animal’s
mass (see below for explanation of dosages; [11]). The
hormone was administered in 100 μl of SAR with a 1-cc
insulin syringe via a ventral intraperitoneal injection. After
each injection, we isolated males in individual cages
(29.8 × 20.3 × 19.7 cm; PetCo Pet Keeper, San Antonio,
Texas), which were covered with wet paper towels to
maintain humidity until spermiation. Research on Fowler
Toads (Anaxyrus fowleri) showed that subsequent injec-
tions every 7 d did not adversely affect sperm count over a
breeding season [5]. Thus, we allowed 1–4 weeks between
injections. We also controlled for seasonal effects by
randomizing the treatment order for each individual in
each experiment and by conducting trials during the
natural breeding season for A. callidryas (May through
November; [20]). Through all experiments, we attempted
to minimize handling stress by 1) allowing only experi-
enced handlers to work with frogs; 2) handling animals
only during injection and spermiation; 3) spermiating
frogs only once per injection and 4) returning animals to
holding tanks immediately after procedures.

Dose-dependence trials
To test for population-level differences in hormone
dose-dependence on spermiation, we injected males (n = 5)
from each of the four populations. All males in this study
received each of the three dose treatments (0, 2, or 4 μg/g
LHRHa) in a randomized order. Preliminary trials indicated
that hormone doses ranging from 0.1 to 1 μg/g LHRH were
insufficient to elicit spermiation in Red-eyed Tree-
frogs (Jacobs; unpubl. data). We collected spermic
urine samples, as described below, from each male
3 h (±10 min) post administration of hormone [5].

Time-dependence trials
To test whether highly differentiated populations differ
in spermiation responses over time, we injected males
from two allopatric populations that exhibit partial

premating reproductive isolation: La Selva (n = 7) and
Bijagual (n = 10). Due to limited number of individuals
some males in the dose-dependence trials were also used
in the time-dependence trials (La Selva (n = 5); Bijagual
(n = 2)). We used a dose of 4 μg/g LHRH for all injec-
tions because we measured similar sperm concentrations
in response to 4 μg/g LHRH from both populations in
previous trials (see Results; dose-dependence trials;
Additional file 1). Each male in this study was injected a
total of four times: once for each treatment (spermiation
at 3, 7, 12, and 24 h post injection) on a randomized
schedule over a period of 4 weeks.

Sperm count and viability
We collected spermic urine for sperm count and viabil-
ity estimates by firmly grasping each frog by the front
legs and holding it over a Petri dish until it urinated
(usually 5–10 s). We collected the sample from the Petri
dish using a sterile 100 μl pipette and used approxi-
mately half the sample for sperm count analyses and
placed the remaining sample in a 1.5 ml microcentrifuge
tube for sperm-viability analysis.
Sperm count was conducted using a hemocytometer.

We counted each sample twice and used the mean in
analyses. Our measures were highly repeatable (repeat-
ability SPSS 20.0; r = 0.95; [21]). To determine sperm
viability (live sperm/total sperm counted), we used
SYBR-14 and propidium iodide, a staining method com-
monly used for amphibians (e.g., [10, 13, 22, 23]). Briefly,
we homogenized samples with 5 μl of a 1:50 dilution of
SYBR-14 (Invitrogen L-7011, Canoga Park, CA) and
incubated for 7 min; we then incubated with 2 μl propi-
dium iodide for 7 min. Both incubations were done in
the dark. We analyzed stained samples using fluorescent
microscopy under 100× magnification (Zeiss inverted
fluorescent microscope, 2012, Dublin, CA). We counted
no fewer than 20 sperm per sample (baseline number
for examining viability of sperm in amphibians; [24]);
samples with fewer than 20 sperm were not included in
viability analyses.

Statistical analyses
We used an ANCOVA for counts for both dose-
dependence and time-dependence trials to account
for body mass as a covariate and distinguish the po-
tential role of body size on sperm production. We
conducted two-way repeated measures ANOVAs on
sperm viability for both dose-dependence and time-
dependence trials. We used a Tukey’s post-hoc com-
parison of means on factors that were significant in
either study. All analyses were conducted in StataIC
(v. 10.1). Results were considered significant when P
was < 0.05.
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Results
Dose-dependence trials
None of the males produced sperm following the 0 μg/g
LHRH control injections. In response to 2 μg/g LHRH,
all males from Bijagual and Gandoca produced sperm;
60% (3/5) of La Selva males produced sperm and 80%
(4/5) of Pavones males produced sperm. All males in the
study produced sperm after an injection of 4 μg/g LHRH
with the exception of one Bijagual male.

Sperm count
There was no difference in sperm count in response to
LHRH dosage (2 vs. 4 μg/g) among populations (two-way
RM ANCOVA; F3,45 = 1.32, P = 0.30) or within (F1,45 = 0.22,
P = 0.64) populations (Additional file 1). Body weight was
not significant so was dropped from the model and counts
were re-run as a two-way repeated measures ANOVA. The
results did not change with body weight dropped from the
model: we detected no difference in sperm count in
response to either dose of LHRH among (two-way
RM ANOVA; F3,45 = 0.57, P = 0.64) or within (F3,45 =
0.55, P = 0.46) populations.

Viability
The viability of sperm in response to LHRH differed
among populations (two-way RM ANOVA; F3,41 = 6.78,
P < 0.01). A posthoc Tukey Kramer test showed that
sperm viability in La Selva frogs was significantly lower
than Bijagual frogs in response to the hormone LHRH
(P < 0.05; Fig. 2). We found no difference in overall
viability response to dosage of hormone LHRH (2 vs.
4 μg/g) (F3,63 = 0.83, P = 0.37) (Fig. 2).

Time-dependence trials
We injected 10 Bijagual males with 4 μg/g LHRH for
time-dependence trials; 90% (9/10) produced sperm after

3 h; 80% (8/10) after 7 and 12 h, and 70% (7/10) after
24 h. We injected 7 La Selva males; 57% (4/7) produced
sperm after 3 h; 85% (6/7) after 7 h; 57% (4/7) after 12 h,
and 71% (5/7) after 24 h.

Sperm count
Body weight had no effect on sperm-count production
(F1,67 = 0.05, P = 0.83) and was dropped from subsequent
models. Sperm count did not significantly differ over
time within populations (F3,68 = 1.58, P = 0.20) and no
significant differences could be detected between La
Selva and Bijagual in these trials (F1,68 = 1.86, P = 0.19;
Additional file 2).

Viability
The interaction of population by time was not significant
and was dropped from the model. Sperm viability did
not differ among populations (F1,48 = 0.02, P = 0.90) but
did differ between time points (F3,48 = 4.23, P = 0.013;
Fig. 3). Populations had peak viability at 3 h PI and a
posthoc Tukey Kramer test showed that this timepoint
differed from 24 h PI (P < 0.05).

Discussion
We found that exogenous hormone LHRH was effective
in producing viable sperm from all populations of
Red-eyed Treefrogs in our study. Collectively, males
produced sperm in response to the hormone LHRH in
100% of all dose trials. For successful in vitro
fertilization, a concentration of 1 × 105 motile sperm/ml
is needed to fertilize a clutch of 100–200 eggs [5].
Female Red-eyed Treefrogs in laboratory settings pro-
duce 50 to 200 eggs per clutch (unpubl. data). Therefore,
all populations in this study produced sperm count well
above this baseline, and most produced over 70% viable
sperm (Fig. 2).

Fig. 2 Mean (± SE) sperm viability differed among populations (n = 5
for all) of Agalychnis callidryas in response to 2 μg/g (white bars) or
4 μg/g (dark gray bars) LHRH. The La Selva population differed from
other populations in sperm viability in response to the hormone LHRH
(P < 0.001). All populations showed similar sperm viability in response
to 2 vs. 4 μg/g LHRH

Fig. 3 Mean (± SE) sperm viability of Agalychnis callidryas varied over
time for both populations, Bijagual (white bars) and La Selva (dark gray
bars) to 4 μg/g LHRH with the highest concentration occurring at 3 h
PI and decreasing at 24 h PI (P < 0.05)
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We detected variation among populations in sperm
viability in response to LHRH. Sperm produced by La
Selva frogs showed reduced viability compared to all
other populations. In addition, more La Selva individuals
failed to produce spermic urine than individuals from
any other population: 33% (2/6) of La Selva males
injected with 2 μg/g LHRH in dose-dependence trials,
and 57% (4/7) of males in time-dependence trials failed
to produce any sperm after 3 h, although the differences
among populations were not significant (cases of non-
production of spermic urine: Bijagual: 0.17% (1/6) in
response to 4 μg/g, Pavones: 0.20% (1/5) in response to
2 μg/g, Gandoca: 0% (0/6) in response to 2 or 4 μg/g).
Individual and population-level responses to LHRH

differed between the two experiments. For example,
Bijagual produced higher sperm count in time trials rela-
tive to dose-dependence trials, while the La Selva popu-
lation showed the opposite pattern. Two males per
population demonstrated vastly different sperm viability
between the dose-dependence trials and the time-
dependence trials: for example, one Bijagual male pro-
duced 0.7% viable sperm in one trial and 90% viable
sperm in a later trial at the same dosage and time point
(4 μg/g and 3 h PI). High within-population variability in
ejaculate characteristics has been reported across taxa
[25–27]. Within amphibians, individual variation in
sperm count in response to injections of LHRH was
observed to be 44-fold within a population of Peron’s
Treefrog (Litoria peronii) [22]. Fewer studies have inves-
tigated among-population variation in sperm. Hettyey
and Roberts [28] found that sperm quality (longevity
and motility), size, and sperm concentration collected
from testis macerates varied within and among non-
divergent breeding populations of Crinia georgiana. We
are not aware of any other studies investigating inter-
population variation in sperm traits in isolated and
potentially divergent populations and/or in response to
exogenous hormones. More research is thus called for to
reveal how population-level differences may impact the
development of ART protocols for rare or threatened
species that occur in isolated populations.
As with many ART studies, several caveats apply to our

work. Our sample sizes were low due to permit limitations
in the number of animals we were able to collect. How-
ever, despite this constraint, we detected significant differ-
ences in sperm viability in our dose-dependence trials and
a significant reduction in viability over a 24 h period in
our time-dependence trials. While we used the same
males in both experiments, we consider this unlikely to
have affected our results based on previous work with am-
phibians [11] and based on the fact that sperm count did
not drop over the course of the experiment; indeed, one
population demonstrated an increase in average sperm
viability between experiments. In addition, studies on

toads (Bufo fowlerii, Bufo americanus, & Bufo valliceps)
demonstrate that repeated injections continued to be
effective with no obvious declines in sperm number, via-
bility or motility [5, 24].
We did not test for sperm quality among populations,

nor did we examine genetic compatibility in an in vitro
fertilization setting, important factors in validating ART
protocols. For example, within Bufonidae, Anaxyrus
americanus produced viable sperm of good quality in
response to the hormone hCG. While a closely related
and rare species, Anaxyrus baxteri, produced similar
sperm counts and viability estimates in response to the
same dosage of hCG, sperm also had abnormal heads
[12]. In addition, in vitro studies using isolated popula-
tions of Pseudophryne bibronii showed evidence of high
embryo mortality in outcrossed clutches indicating
genetic incompatibility among populations [22]. Examin-
ing genetic compatibility, sperm quality and in vitro
fertilization success are the next steps toward a conser-
vation management plan that involves ART.

Conclusion
To our knowledge, this study presents the first examin-
ation of hormone efficacy at inducing spermiation
among highly divergent populations of an anuran. The
hormone LHRH was effective at inducing spermiation
and we recommend for baseline ART protocols a dosage
range of 2–4 μg/g LHRH at a time point of 3 h post
administration in this species, which may have broader
applications for other phyllomedusines. We detected
variation both within and among genetically and pheno-
typically divergent populations.
Documenting temporal variation, peak sperm produc-

tion and viability in response to hormones are critical
components of ART protocols such as cryopreservation
of gametes or in vitro fertilization techniques. Sperm
count and viability are highly variable over time among
species and families in response to hormones [22] and
one study found high intraspecific variation among
populations that did not show genetic or phenotypic di-
vergence across their range [28]. Taken together, these
findings indicate that an intraspecific lineage is not
enough to justify the assumption that a single ART
protocol fits all, but rather that protocols should be
viewed as a starting point if populations are highly dif-
ferentiated and/or isolated. In addition, many ART pro-
tocols use non-threatened, closely related, species as a
proxy and then test on rare species, but because rare
species are often represented by small, isolated popula-
tions that may possess unique genotypes, protocol
optimization should be adapted to consider and
document differences in source populations [12, 23].
ART has been successfully applied to mammals, cepha-
lopods, reptiles, birds and amphibians [5, 29–33]. Thus,
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these findings inform conservation and breeding man-
agement of threatened or isolated populations spanning
a range of diverse taxa.

Additional files

Additional file 1: Average sperm concentration by males, grouped by
population, in response to 2 vs. 4 ug/g LHRH. No population males produced
sperm after the control injection of 100 uL SARS. Sperm count was calculated
as number of sperm× 103 in one mL of spermic urine. (PDF 14 kb)

Additional file 2: Average sperm count by males, grouped by time.
Sperm was analyzed post administration (PA), in response to 4 ug/g LHRH.
Sperm count was recorded for all samples ≥20 sperm per sample and was
calculated as number of sperm× 103 in one mL of spermic urine. (PDF 15 kb)

Abbreviations
ART: Assisted reproductive technology; GnRH: Gonadotropin-release
hormone; hCG: Human chorionic gonadotropin; IUCN: International Union
for Conservation of Nature; LHRH: Luteinizing hormone-release hormone
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