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Abstract
During maturation, the last phase of oogenesis, the oocyte undergoes several changes which
prepare it to be ovulated and fertilized. Immature oocytes are arrested in the first meiotic process
prophase, that is morphologically identified by a germinal vesicle. The removal of the first meiotic
block marks the initiation of maturation. Although a large number of molecules are involved in
complex sequences of events, there is evidence that a calcium increase plays a pivotal role in
meiosis re-initiation. It is well established that, during this process, calcium is released from the
intracellular stores, whereas less is known on the role of external calcium entering the cell through
the plasma membrane ion channels. This review is focused on the functional role of calcium
currents during oocyte maturation in all the species, from invertebrates to mammals. The emerging
role of specific L-type calcium channels will be discussed.

Review
Oocyte maturation
Oogenesis is characterized by a unique process of cell divi-
sion occurring only in gametes, called meiosis; whose goal
is the production of haploid cells highly specialized for
fertilization. In the majority of species the oocyte arrests in
different stages of meiotic division, in particular, the block
occurring in the first meiotic prophase (PI) marks the state
of immature oocyte characterized by a prominent nucleus
called the germinal vesicle (GV), which contains de-con-
densed transcriptionally active chromatin [[1] for a
review]. As a general scheme, in response to a stimulus,
meiosis is resumed and manifested by a germinal vesicle
breakdown (GVBD), it then progresses to metaphase I
(MI) or II (MII) where it undergoes a second arrest that is
removed after successful fertilization.

Oocyte maturation is usually defined as the period of pro-
gression from the first to the second meiotic arrest and
involves coordinated nuclear and cytoplasmic modifica-

tions [2]. These are highly complex processes and their
interplay is regulated by a series of sequential molecular
events. Nuclear maturation starts with the GVBD, ends at
the meiosis exit, and is marked by the presence of the two
polar bodies. Cytoplasmic maturation is a more obscure
process and involves both morphological and functional
alterations related to: i) changes in the expression profile
of cell cycle control proteins responsible for driving the
oocyte towards developmental competencies [3-5]; ii)
relocation of organelles [6-8]; iii) transcriptional modifi-
cations of mRNA [9], modification of the plasma mem-
brane permeability [10,11]; iv) the differentiation of the
calcium signalling machinery [12].

Although the arrest at the PI stage seems to be strictly cor-
related with the oocyte growth, the meiotic stage corre-
lated with fertilizable oocyte is species-specific. In some
animals, oocytes are fertilized at the PI stage (anellida,
plateyhelminthes, polychaeta, mollusca, arthropoda,
echinoderms, and some mammals) or, on the contrary,
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there are some oocytes that are fertilized after meiosis
completion (coelenterate, echinoderms). In worms, ascid-
ians, molluscs, and some insects, a second arrest occurs at
the MI stage and at the metaphase II (MII) stage in the
Amphioxus and all the vertebrates [13,14] (Fig. 1).

The control of oocyte maturation involves a complex
interplay between the oocyte and the extracellular mem-
branes and the environment, with the participation of

numerous metabolic pathways. The resumption of mei-
otic maturation relies on two different mechanisms: a
positive stimulation and the removal of an inhibitory sig-
nal. The former involves the production of a ligand that
acts on the oocyte at the GV stage inducing the GVBD.
While this general mechanism is common to almost all
the species studied, the nature of the ligand that allows the
passage between the first and second meiotic block is dif-
ferent in each species.

A schematic illustration of the resumption of meiosis in different animal modelsFigure 1
A schematic illustration of the resumption of meiosis in different animal models. The immature oocyte is arrested in prophase 
I (PI) marked by the germinal vesicle (GV). Depending on the species, oocytes may be fertilized in PI, undergoes a second mei-
otic block at the metaphase I (MI), metaphase II (MII) or may complete meiosis before fertilization. MII is marked by one polar 
body (yellow). Resumption from the second meiotic block occurs upon sperm penetration leading to germinal vesicle break-
down (GVBD), meiosis completion and zygote formation marked by the two inner pronuclei and two polar bodies.
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Studies on this topic have established that 1-methylade-
nine (1-MA), serotonin, and steroids resume the first mei-
otic block in starfish [15], molluscs [11,16], fishes [17],
and amphibians [18] respectively, while in mammals, it is
the luteinizing hormone (LH) surge [19] that is known for
initiating the transition from PI through MI to MII.

In the absence of positive stimulation, meiotic arrest
appears to be maintained by a constraint of the environ-
ment surrounding the oocyte. In some species, oocytes
undergo maturation as soon as they are isolated from
their follicles or the external milieu, suggesting that these
elements contain substances preventing meiosis resump-
tion of PI arrested oocytes [20,21]. Assuming the existence
of an interplay between the two mentioned mechanisms,
meiosis resumption may occur through: i) the generation
of a signal that in turn is transferred to the oocyte through
the follicular environment; ii) the override of the environ-
mental inhibition by removing the contact between
oocyte and its follicular envelope and the closure of the
connecting junctions [22].

Meiosis arrest and resumption are modulated by numer-
ous messengers. Many studies have provided evidence of
the involvement of cyclic nucleotides in the maintenance
of meiotic arrest [23]. Elevated levels of cyclic adenosine
mono-phosphate (cAMP), some analogues, cAMP-
dependent protein kinase (PKA), and related substances
such as GPR3, act by preventing spontaneous maturation
and/or blocking GVBD in vitro [24-28]. However, con-
trasting data show that high levels of cAMP may only tran-
siently block GVBD [29] or may even release the oocyte
from meiotic arrest. [30,31].

Another important factor responsible for meiosis resump-
tion is the M-phase promoting factor (MPF) showed for
the first time in amphibian oocytes in the 70s, by Masui
[32]. Nonetheless most of the work on MPF has been car-
ried out with frog and starfish oocytes, accumulated evi-
dence demonstrates that this complex function exists in
other animal models, such as mammals and invertebrates
[10,33-36] . Although oocytes from different species dis-
play different sensitivities to inhibitory and stimulatory
ligands, there is a general consensus that calcium ions
play a fundamental role in the resumption of meiotic mat-
uration [4,37].

Calcium and maturation
The role of ion currents in the oocyte physiology is
described in many animal species [38-41]. In particular,
calcium currents have been shown to be vital in regulating
a broad range of physiological processes [42,43].

The calcium rise in the cell occurs by means of two princi-
pal mechanisms: the efflux from the stores via ligand-

gated channels on organelle membranes, and the entry
through ion channels in the plasma membrane. Most of
the events underlined by the former mechanism are asso-
ciated with two families of ion channels stored in the
endoplasmic and/or sarcoplasmic reticulum in all cell
types: the ryanodine receptor (Ryr) and the inositol 1,4,5-
trisphosphate receptors (IP3r). The phosphoinositide
pathway is of primary importance in mobilizing calcium
into the cell, since elevation of IP3 levels elicits transient
calcium currents from the intracellular stores [44,45]. On
the other hand, calcium ionophore, is known to cause an
increase in intracellular calcium concentration through
Ryr. IP3 and Ry receptor/channels complexes share com-
mon features for what concerns both the amplification of
calcium release by a positive feedback and the termina-
tion due to a negative feedback [46]. The responsiveness
of the intracellular receptors/channels is regulated by a
combination of factors, such as the calcium loading of the
reticulum, and the sensitivity of the receptors to cytosolic
calcium and to agonist concentration [46]. In excitable tis-
sues, calcium entry is accomplished by the opening of
voltage-operated calcium channels (VOCs) that mediate
calcium influx in response to membrane depolarization
[47]. At last, a connection between the two pathways is
supported by the store-operated channels [48] through
which a calcium influx is induced by the depletion of
internal stores [49].

It is well established that calcium is involved in the phys-
iology of the oocyte from oogenesis to maturation and fer-
tilization [33,50-53]. Particularly, it has been described
that the transition from one meiotic phase to the follow-
ing is regulated by cell cycle control checkpoints which are
in turn modulated by a transient increase of intracellular
calcium in many animal species [4]. A general correlation
between calcium and the GVBD has been demonstrated
by a large number of studies. GVBD in mammalian
oocytes is blocked by calcium chelators at least up to the
first metaphase [33] whereas, in absence of intracellular
calcium elevation spontaneous meiosis resumption in
vitro does not occur [54]. Consistent data showed that
injection of calcium in mouse oocytes induces partheno-
genetic activation and subsequent normal development
[55].

Intracellular and plasma membrane calcium currents
Literature reveals that re-initiation of meiosis is mediated
by both intracellular and plasma membrane calcium cur-
rents, sometimes in a synergic cooperation. In some spe-
cies, intracellular currents stimulated by calcium
ionophore induce oocyte maturation [56,57] whereas,
particularly in starfish, it appears that IP3r amounts and
sensitivity to IP3 increase during maturation. Although a
direct correlation between GVBD and calcium internal
currents has not been proven in this species [58], there is
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evidence that in the maturing oocyte the mechanism for
calcium release is mediated also by Ry and cADP-ribose
sensitive channels [7,59-61].

In molluscs in 1953, Allen [62] first reported a role of
external calcium in the induction of GVBD in the Spisula.
Later on, the external calcium requirement through volt-
age-gated channels was confirmed in this species and
extended to the other molluscs that are also fertilized at
the PI stage [63,64], or undergo the second arrest in MI
[11,65]. Along with the extracellular calcium induction of
GVBD in molluscs, it was soon recognized that there was
an influence of the intracellular calcium elevation in
almost all species studied independently from their pecu-
liar meiotic arrest [64,66,67]. In particular, the interplay
between external and internal calcium currents is evident
in Ruditapes; here, a serotonin-induced surge of intracellu-
lar calcium was shown to trigger maturation even in the
absence of external calcium [67]. As a general rule in mol-
luscs, the initial plasma membrane calcium currents cre-
ate a depolarization that, in turn, mobilize intracellular
calcium currents from the stores [16,68]. However, a few
exceptions must be mentioned, such as the Hiatella flacc-
ida, where an intracellular calcium increase might be
responsible for release from PI arrest, without a correla-
tion with extracellular calcium [69]. Another example is
the oyster [70], where calcium might not be involved in
the early maturational stages. In surf clams and bivalves,
experiments with IP3-induced GVBD suggest that release
of internal calcium may be mediated by IP3-sensitive cal-
cium currents [68,69,71,72].

Ascidians are ubiquitous marine invertebrates, whose
oocytes maturate in the ovary. Immature oocytes are char-
acterized by the GV; subsequently, to a still unknown
stimulus, they undergo GVBD and resume meiosis up to
the MI mature stage. Despite a large number of studies on
ascidians, little information is available on the mecha-
nisms that induce oocyte passage from the PI to MI block
[73]. Very recently, Lambert [74] reviewed the signalling
pathways underlying GVBD and he indicated that in some
species the calcium ionophore induces GVBD [75]. In
addition, it has been shown that intracellular calcium may
either trigger or inhibit the GVBD onset [76]. Although
these data show a general calcium role, a specific involve-
ment of ion currents has been examined only recently in
the ascidian Ciona intestinalis. Here, the first electrophysi-
ological characterization of the plasma membrane at the
GV stage oocytes – along with in vitro maturation experi-
ments – strongly indicate a role of voltage-gated calcium
currents in the prophase/metaphase transition [77].

Oocyte maturation mechanisms have been described in
amphibians since the mid 80s [78]. Ion currents have
been widely examined in immature oocytes of Xenopus

laevis and Rana esculenta with growing evidence that chlo-
ride currents play a relevant role in the physiology of the
oocyte [39]. Literature of the late 70s reports that transient
calcium rises were associated to steroid-induced matura-
tion events [79,80] proposing calcium function as the ini-
tial step in maturation induction. Although contrasting
results indicated that calcium itself was not necessary to
Xenopus oocyte maturation [81], recently Machaca [12]
demonstrated a direct action of calcium release events
during oocyte maturation in this species. Actually, evi-
dence exists for an involvement of calcium currents in the
activation of chloride [82-85], sodium, and hydrogen cur-
rents [86,87].

In amphibians, apart from a general change of membrane
permeability during maturation [88], it seems that
nobody has thus far correlated meiosis progression and/
or GVBD to the intracellular or plasma membrane cal-
cium current activity. However, when a role for ion cal-
cium release in immature oocytes was shown, evidence
demonstrated that this event occurs through IP3-sensitive
stores currents [12,84,86,87].

In mammals, as a general scheme, oocyte maturation
involves the resumption of meiosis in response to a surge
of LH [23], the disruption of gap junctions after gonado-
tropin stimulation [89] and a decrease in cAMP levels
[23]. Although a potential role of calcium currents in mei-
osis resumption is known, it remains to be elucidated if:
i) calcium participates by itself as positive signal by cou-
pling LH-induced GVBD or, ii) the other factors that
traverse the gap junctions may influence the calcium lev-
els within the oocyte. Literature shows that intracellular
calcium oscillation is required for spontaneous matura-
tion of mouse [90,91] and pig [92] oocytes, and that the
increase in calcium concentrations at the time of GVBD
confirms the relationship between intracellular calcium
currents and oocyte maturation in different species
[54,90,92,93]. The occurrence of spontaneous calcium
oscillations in the mouse GV oocyte during meiotic matu-
ration in vitro showed the involvement of an IP3-depend-
ent mechanism [94], such as in hamsters [95], bovine
[96], and humans [97].

Along with IP3 receptors and nonetheless many controver-
sies, the occurrence of functional Ryr suggested an addi-
tional Ry-sensitive calcium-release mechanism in mouse
[[55] and references therein], bovine [98], and human GV
oocytes [99]. All together these data indicate that GV
mammalian oocytes may account for both IP3 and Ry-
mediated intracellular calcium currents in the meiotic
transition from PI to MII stage.

Similar data have been reported for plasma membrane
calcium currents; in fact the occurrence of both not-spe-
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cific and calcium channels on the immature oocyte
plasma membrane of mammals were demonstrated by
Yoshida [100-102], whereas an externally derived calcium
requirement at maturation was shown in the hamster [57]
and other mammals [56,103-105].

In 1993, Murnane and De Felice [106] performed the first
accurate electrophysiological characterization of imma-
ture murine oocytes demonstrating that plasma mem-
brane calcium currents selectively increase in the growing
oocyte and that this increase precedes nuclear maturation.
These authors suggested that either intracellular or plasma
membrane calcium currents may mediate the onset of
oocyte maturation. In mice, confirming findings showed
that GV and GVBD-arrested oocytes had some defects in
calcium channel expression or translation, suggesting that
an increase of calcium channel density may attain the
oocyte meiotic competence [107].

The first electrophysiological characterization of GV stage
bovine oocytes showed a plasma membrane calcium cur-
rent activity during meiotic progression [108] and a prev-
alence of calcium stores at the GV stage [109]. Together
these data indicated a possible association between LH-
mediated calcium elevation and plasma membrane cal-
cium currents. It was, in fact, suggested that in addition to
store-released calcium, the plasma membrane currents
might provide an alternative/additional mode of calcium
entry in meiosis resumption. As it happens with bovine,
recent preliminary experiments in sheep oocyte plasma
membrane showed an involvement of calcium currents in
the GV/MII transition [110]. Despite the general consen-
sus, a few conflicting data show that calcium ion transport
may underlie only a few phases of maturation [111] and
even a calcium-independent GVBD in the mouse [112].

L-type calcium currents
Numerous studies indicate that the intracellular calcium
release is the universal mechanism that underlies the mei-
otic resumption at oocyte maturation [33,51]. On the
contrary, the involvement of plasma membrane calcium
currents has been described only in some species of mol-
luscs [11,113-115], ascidians [77], amphibians [117], and
mammals [106-108]. It is interesting that, in many cases,
the specific channels involved in meiosis re-initiation are
L-type calcium channels. These are voltage-gated channels
that open in response to a depolarization of the plasma
membrane and are expressed in different tissues in order
to mediate signalling between cell membrane and intrac-
ellular processes, i.e. blood pressure regulation, smooth
muscle contractility, insulin secretion, cardiac develop-
ment, and learning and memory [[118], for a review]. In
ascidians it was recently demonstrated that L-type calcium
channels are involved in a series of biological processes
[119]; however, first indication of a role of these channels

in the reproductive processes was provided in mature
oocytes [120,121], suggesting that cytosolic calcium
release may be modulated by these plasma membrane cal-
cium currents. Similarly, in some molluscs, progressive
appearance of L-type calcium currents after stimulation by
5-HT correlated with the ability of MI-arrested oocytes
seems to be responsive to fertilization [114,115]. Only in
recent years has it been found that, in different species,
oocyte maturation marked by the GVBD relies specifically
on L-type calcium currents. In the mollusc this occurs in
species with diverse maturational behaviour. In telolecitic
oocytes of Octopus vulgaris maturation was strictly corre-
lated with the decline in L-type calcium currents and the
different developmental stages of cytoplasmic and nuclear
maturation [11] and in the mussel oocytes a perfect corre-
lation between inhibition of plasma membrane L-type
calcium channels and inhibition of meiosis was shown
[115]. In addition, in the Mytilus these channels appeared
to be essential to sustain cytosolic calcium increase in
order to extrude the first polar body.

A supporting finding also comes from the amphibians.
Pleurodeles oocyte maturation is responsive to progester-
one stimulation only during the breeding season versus a
resting season. Interestingly, an electrophysiological study
has strictly correlated the alternate expression of calcium
channels in the two seasons, showing a higher current
density and functional expression of the L-type during the
maturational period. Furthermore, this study demon-
strated a clear correlation of L-type calcium channel activ-
ity, cAMP levels, and the inability of the oocyte to mature
[117]. In the ascidian Ciona intestinalis [77] the electrical
characterization of the GV stage plasma membrane was
recently carried out showing the higher occurrence of L-
type calcium channels in the GV with respect to the
mature stage. This pattern, together with the higher intra-
cellular calcium release in the MI oocyte, has led to the
hypothesis that L-type channels may play a double role in
both regulating the GV/MI transition and participating in
the loading of calcium stores necessary for subsequent fer-
tilization. Similarly, the ability to reduce the GVBD in
absence of external calcium further suggests that this
response may require functional plasma membrane cal-
cium channels [77].

Substantial differences occur in mammalian species. In
the mouse it was first shown that the external calcium
dependence implies the involvement of unspecific volt-
age-gated calcium channels in the onset of maturation in
the different developmental stages such as oocytes-neona-
tal and GV stages [106]. However, a clear distribution pat-
tern of the L-type calcium channels has only been
subsequently provided showing that they undergo a den-
sity rearrangement only in the later stages of maturation
until disappearing totally at the blastocyst stage [107].
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Recently a significant distributional change of the L-type
calcium channels activity from the GV to the MII stage was
identified in bovine and ovine oocytes [108,110]. The
results suggest that a possible common mechanism for the
maturation starting in these two species is the calcium
entry through specific channels potentiating the physio-
logical oocyte-cumulus signalling responsible for meiotic
awakening and progression.(Fig. 2)

Conclusion
The evidence presented in this review supports the
hypothesis that voltage-gated calcium ion currents are
involved in the increase of cytosolic calcium levels occur-
ring at oocyte maturation. Specific focus is centred on the
occurrence and the pattern of L-type calcium currents dur-
ing PI/metaphase transition in different animal species,
implying that expression and translation of these types of
calcium channels may be essential requirements for the
oocyte maturation process and normal development. In
vitro maturation of human oocytes is a challenge that
could revolutionize the infertility treatment and IVF pro-
cedures. In this respect, future research will hopefully lead
to determining the complex interplay between calcium

current dynamics and other metabolic pathways partici-
pating in oocyte maturation aimed at successful oocyte
fertilization and developmental competence.
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