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expression in the bovine corpus luteum: influence
of keratin 8/18 intermediate filaments and
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Abstract

Background: Fas expression and Fas-induced apoptosis are mechanisms attributed to the selective destruction of
cells of the corpus luteum (CL) during luteal regression. In certain cell-types, sensitivity to these death-inducing
mechanisms is due to the loss or cleavage of keratin-containing intermediate filaments. Specifically, keratin 8/18
(K8/K18) filaments are hypothesized to influence cell death in part by regulating Fas expression at the cell surface.

Methods: Here, Fas expression on bovine luteal cells was quantified by flow cytometry during the early (Day 5,
postovulation) and late stages (Days 16–18, postovulation) of CL function, and the relationship between Fas
expression, K8/K18 filament expression and cytokine-induced cell death in vitro was evaluated.

Results: Both total and cell surface expression of Fas on luteal cells was greater for early versus late stage bovine
CL (89% vs. 44% of cells for total Fas; 65% vs.18% of cells for cell surface Fas; respectively, P<0.05, n=6-9 CL/stage). A
similar increase in the steady-state concentration of mRNA for Fas, as detected by quantitative real-time polymerase
chain reaction, however, was not observed. Transient disruption of K8/K18 filaments in the luteal cells with
acrylamide (5 mM), however, had no effect on the surface expression of Fas (P>0.05, n=4 CL/stage), despite
evidence these conditions increased Fas expression on HepG2 cells (P<0.05, n= 3 expts). Exposure of the luteal cells
to cytokines induced cell death (P<0.05) as expected, but there was no effect of K8/K18 filament disruption by
acrylamide (P>0.05) or stage of CL (P>0.05, n= 4 CL/stage) on this outcome.

Conclusion: In conclusion, we rejected our null hypothesis that the cell surface expression of Fas does not differ
between luteal cells of early and late stage CL. The results also did not support the idea that K8/K18 filaments
influence the expression of Fas on the surface of bovine luteal cells. Potential downstream effects of these filaments
on death signaling, however, remain a possibility. Importantly, the elevated expression of Fas observed on cells of
early stage bovine CL compared to late stage bovine CL raises a provocative question concerning the physiological
role(s) of Fas in the corpus luteum, particularly during early luteal development.
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Background
The receptor molecule CD95 (Apo-1) or Fas, is consid-
ered an integral component of immune-response
mechanisms within the corpus luteum (CL) which po-
tentially influence luteal function. It is a member of the
TNF receptor superfamily [1] and is thought of as the
prototypical death receptor because when bound by Fas
ligand (FasL), cells undergo apoptosis [2]. The binding
of FasL to Fas triggers trimerization of Fas receptor on
the cell surface. This complex then leads to the activa-
tion of Fas associated death domain and pro-caspase-8
proteins. The cleavage of pro-caspase-8 signals the
caspase cascade, which then leads to the activation of
pro-caspase-3 and apoptosis [3,4]. Indeed, in the cow,
expression of Fas mRNA within the CL occurs through-
out the luteal phase [5], and exposure of luteal cells to
FasL, induces apoptosis [5,6]. Recently, Kliem and cowor-
kers determined Fas and FasL mRNA increase in bovine
CL within 30 min to 2 h of injecting cows with a luteoly-
tic dose of prostaglandin F2-alpha [7], further supporting
the death-inducing role of Fas and FasL in the CL. These
observations collectively suggest Fas-induced mechan-
isms within the bovine CL constitute a plausible pathway
for the cell-specific death observed during luteal
regression.
The attractiveness of the Fas-induced death pathway

in luteal regression is that it is relatively conserved
among species and it provides for the selective elimin-
ation of cells (i.e., via apoptosis) without invoking an in-
flammatory response. Indeed, regression of the CL is
characterized by cells undergoing apoptosis while neigh-
boring cells remain unaffected [8]. The relative amount
of expression of Fas on the surface of luteal cells might
account for at least some of this selectivity and specifi-
city, but this has not been directly evaulated in the CL.
Instead, most studies to date have examined only gross
expression of Fas mRNA or FasL in luteal tissue to
propose a role for the Fas-FasL system in luteal function.
In addition, potential mechanisms influencing Fas ex-
pression on the luteal cell surface have yet to be
explored. Here we speculated cytoskeletal components,
specifically intermediate filaments, regulate expression
of Fas on the surface of luteal cells, and hence lend spe-
cificity to the process of Fas-induced apoptosis of luteal
cells in the CL.
The cytoskeleton of cells consists of microtubules,

microfilaments, and intermediate filaments. Intermediate
filaments have a diameter ranging between 7–11 nm and
consist of a family of five different subtypes [9]. One of
the subtypes is the keratin-like proteins, which are found
in epithelial tissues, including the steroidogenic cells of
ovarian follicles and CL [10-16] . Keratin filaments are
obligate heterodimers, forming filaments of an acidic
keratin (type I, K9-K20), and a basic keratin (type II, K1-
K8) [9,17]. The more prominent types of keratin fila-
ments found in epithelial cells include filaments contain-
ing K7, K8, K18, and K19 [9]. In the bovine CL, K8/K18
filaments are observed in luteal cells throughout the es-
trous cycle, yet their relative expression diminishes with
advancing age of the tissue [16]. Functionally, K8/K18
filaments provide structural integrity to cells, but they
also influence intracellular transport mechanisms and
signaling [18,19]. In particular, the expression of these
filaments in certain types of epithelial cells provides a
mechanism of resistance to apoptosis. For instance, K8/
K18 filaments in hepatocytes impair cytokine receptor
trafficking and cell surface expression [20-22]. Whether
or not K8/K18 filaments similarly impair Fas expression
on luteal cells has not been tested.
In the present study, the objective was to quantify Fas

expression on bovine luteal cells during the early devel-
opmental (Day 5, postovulation) and late functional
stages (Days 16–18, postovulation) of the CL, examine
the relationship between luteal Fas and K8/18 filament
expression, and assess the susceptibility of the luteal
cells to cytokine-induced death. Our null hypothesis was
that the surface expression of Fas on luteal cells does
not differ between the two stages of corpora lutea (i.e.,
early vs. late stage CL). In addition, we tested whether
the disruption of K8/K18 filaments in the luteal cells
increases the cell surface expression of Fas, and thus
their susceptibility to cytokine-induced apoptosis. Ex-
perimentally, cultures of bovine luteal cells from early
and late stage CL were exposed acutely to acrylamide to
disrupt the K8/K18 filaments. The effects of filament
disruption on Fas expression and cytokine-induced
apoptosis were then measured.

Methods
Collection of bovine corpora lutea for dissociation and Q-
RTPCR
All animal studies described herein were approved by
the UNH Institutional Animal Care and Use Committee
(IACUC# 090205). Estrous cycles of Holstein dairy cows
were monitored using transrectal ultrasonography, and
corpora lutea (CL) were removed by colpotomy at days
5 (early stage; n=6 cows) and 16–18 (late stage; n=9
cows) postovulation (ovulation = day 0). Luteal cells
obtained from CL at these two stages of luteal function
express relatively high and low amounts of keratin inter-
mediate filaments, respectively, based upon previous
findings [16,23]. Prior to CL removal, blood samples
were obtained by coccygeal venipuncture using hepari-
nized tubes to measure plasma progesterone concentra-
tion and verify the relative stage of the estrous cycle.
Corpora lutea and blood samples were transported to
the laboratory on ice where the CL were extracted for
total RNA (described below) and enzymatically
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dissociated using collagenase type I (Worthington, Lake-
wood, NJ) as described previously by others [24]. Fol-
lowing enzymatic dissociation, the viability of the luteal
cells was estimated to be 88-93% as determined by try-
pan blue exclusion. The dissociated luteal cells were
then either freshly-fixed in paraformaldehyde for flow
cytometric analysis, or placed in serum-free culture for
further experimentation (described below). The hepari-
nized blood samples from the cows were centrifuged at
2056xg for 20 min at 4°C to obtain plasma, which was
then frozen at −20°C until assayed for progesterone by
radioimmunoassay (RIA) as described previously [25].
Total RNA was isolated from the two stages of bovine

CL (n= 5–7 CL/stage) using a Quick-RNATM Mini Prep
kit (Zymo Research, Irvine, CA). The total RNA was
then purified from genomic DNA contamination using
RQ1 RNase-Free DNase (Promega, Madison,WI). The
purified total RNA was reverse-transcribed to synthesize
cDNA using the qScript™ cDNA Synthesis Kit (Quanta
Biosciences, Gaithersburg, MD). The cDNA was then
used for subsequent quantitative real time polymerase
chain reaction (Q-RTPCR) with SyBr Green detection
(Quanta Biosciences, Gaithersburg, MD). Sequence-
specific primers for bovine Fas and β-actin (an internal
control gene), validated previously by Vickers et al.[26]
and Taniguchi et al.[5], respectively, were as follows:
Forward and reverse primers, respectively for bovine

Fas were: 50-ATGGGCTAGAAGTGGAACAAAAC-30

and 50- TTCTTCCCATGACTTTGATACC-30. Forward
and reverse primers, respectively, for bovine β-actin were:
50- GAGGATCTTCATGAGGTAGTCTGTCAGGTC-30

50-CAACTGGGACGACATGGAGAAGATCTGGCA-30.
A thermal cycler was used to conduct the Q-RTPCR

with the cyclic conditions as follows: an initial Taq acti-
vation at 95°C for 2 min, followed by 40 cycles of 95°C
for 1 second, 55°C for 30 seconds and 72°C for 30 sec-
onds. All reactions were carried out on a 7500 Fast Real-
Time PCR System. The data were collected during the
last 30 seconds of cycling and the amplification signals
of Fas transcripts were quantified using a standard curve
based upon an absolute quantitation method. The
results were expressed as a ratio of Fas relative to β-
actin transcripts as the reference (i.e., internal control
gene). Melting curve analysis was performed with condi-
tions as follows: 95°C for 15 seconds, 60°C for 1 min,
and 95°C for 15 seconds.

Culture of bovine luteal cells and disruption of K8/K18
filaments with acrylamide
Freshly dissociated luteal cells were seeded in T25 flasks
at a density of 2×106 viable cells/flask and in 8-well
microchamber slides at 2×104 viable cells/well. The cells
were cultured in serum-free Ham’s F12 culture medium
(Invitrogen, Carlsbad, CA) supplemented with insulin,
transferrin, selenium (ITS; 5μg/5μg/5ng/mL; Sigma
Aldrich, St. Louis, MO) and gentamicin (20μg/mL; Invi-
trogen, Carlsbad, CA) and incubated at 37°C, 5% CO2 in
air and 95% humidity overnight. The purity of the cul-
tures under these serum-free conditions is estimated to
be 70-75% steroidogenic cells because other types of
cells (e.g., endothelial cells, fibroblasts, etc.) are unable
to persist. The day after seeding, the flasks and chamber
slides were rinsed and the conditioned medium replaced
with fresh culture medium prior to treatments. Initial
treatments consisted of flasks and chamber slides treated
with either culture medium (control) or 5mM acryl-
amide (Fisher Scientific, Pittsburgh, PA) for 4 h to dis-
rupt K8/K18 filaments and potentially increase the cell
surface expression of Fas. Acrylamide is a selective, re-
versible, disrupter of K8/K18 filaments in mammalian
cells [27] that under short-term culture conditions does
not adversely affect microtubules [28,29], organelles (e.g.,
mitochondria, [30]), steroid synthesis [31], or cell viabil-
ity [11]. After the initial 4 h treatment period, all flasks
and chamber slides were rinsed twice and the medium
replaced. Cells from several flasks were immediately
prepared for flow cytometric analysis of Fas and K8/K18
expression as described below. The remaining flasks were
treated with a cytokine cocktail containing bovine
interferon-γ (IFN, 200 IU/mL; R&D Systems, Minneap-
olis, MN), murine tumor necrosis factor-α (TNF, 10ng/
mL; US Biological, Swampscott, MA), and human re-
combinant soluble Fas ligand (FasL, 50ng/mL; R&D Sys-
tems, Minneapolis, MN) with a murine monoclonal
anti-6x histidine cross-linking antibody (1mg/mL; R&D
Systems, Minneapolis, MN) for 24 h to induce cell
death. Others have previously shown this mixture of
cytokines is appropriate, and necessary, to induce Fas-
mediated death of bovine ovarian steroidogenic cells
in vitro [5,6,26,32,33]. After 24 h incubation, the flasks
were re-treated with the cytokine cocktail for an additional
24 h, prior to assessment of cytokine-induced cell death.

Cell death counts
Cytokine-induced cell death in the cultured luteal cells
was assessed at three different times during the experi-
ment. The number of attached cells in five random
microscopic fields of view was counted in all of the
flasks prior to cytokine treatment using a 0.25 mm2 grid
(initial cell counts). At 24 and 48 h after treatment, the
number of attached cells in the flasks was again counted
to estimate cell loss (post-treatment cell counts). All five
fields of view per flask were averaged and the percent
cell death was determined using the following equation:

% Cell Death ¼ 1� Post treatment cell countsðð
=initial cell countsÞÞ � 100
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Culture of HepG2 cells
Murine hepatocytes were among the first cells used to
demonstrate that disruption of K8/K18 filaments
enhances Fas trafficking to the cell surface [20]. Here we
utilized human hepatocyte carcinoma cells (HepG2 cells)
to corroborate this finding under the experimental con-
ditions used to disrupt K8/K18 filaments in bovine luteal
cells with acrylamide. Briefly, HepG2 cells were seeded
into T150 flasks at 2×106 cells/flask. The cells were cul-
tured in Eagle’s Minimal Essential Medium (Sigma
Aldrich, St. Louis, MO) supplemented with 10% fetal bo-
vine serum (JRH Biosciences, Lenexa, KS) and incubated
at 37°C, 5% CO2 and 95% humidity. At approximately
70% confluency, the HepG2 cells were subcultured in
T25 flasks using approximately 1x106 cells/flask. The fol-
lowing day, the medium was changed and the cultures
were exposed to vehicle (control) or 5mM acrylamide for
4 h. Following treatment, the cultures were prepared for
flow cytometry to assess cell surface expression of Fas.

Fixation of bovine luteal cells and HepG2 cells for flow
cytometric analysis
Luteal cells from freshly dissociated CL and from serum-
free culture were used to analyze Fas and K8/K18 fila-
ment expression by flow cytometry. For cells obtained
through dissociation of CL, approximately 1.5x106 cells/
tube in 0.4mL of Ham’s F12 culture medium were centri-
fuged using screen-capped tubes (Ref # 352235, BD Fal-
con, San Jose, CA) for 5 min at 276xg, 4°C. The screened
cells were then fixed for 2 h on ice by adding 0.4mL 2%
paraformaldehyde to the cell suspension for a final con-
centration of 1% paraformaldehyde. After fixation, the
cells either remained in fixative (for detection of cell sur-
face Fas) or were rinsed twice with PBS and then per-
meabilized using 70% ethanol (for detection of total Fas
and K8/K18 filament expression). Both the fixed and per-
meabilized cells were stored at 4°C and −20°C, respect-
ively, until further processed for flow cytometry.
Luteal cells in serum-free culture and the HepG2 cells

cultured in serum-containing conditions were fixed in a
similar manner to the freshly isolated luteal cells
described above. Briefly, the flasks of cells were rinsed
twice (5 min each) with Hank’s Balanced Salt Solution
(Sigma Aldrich, St. Louis, MO), followed by two quick
washes with trypsin-EDTA (Cell Gro Mediatech, Mana-
ssas, VA). After the second trypsin-EDTA rinse, the
remaining trypsin was removed and the flasks were left
for 10 min. The trypsinized cells were then collected in
Ham’s F12 culture medium containing 10% fetal bovine
serum (JRH Biosciences, Lenexa, KS), centrifuged for 5
min at 276xg, 4°C and resuspended in Ham’s F12 culture
medium without serum. As above, approximately
1.5x106 cells/tube were centrifuged using screen-capped
tubes for 5 min at 276xg, 4°C. The filtered cells were
fixed for 2 h on ice in 1% paraformaldehyde and either
remained in fixative (detection of cell surface Fas; luteal
and HepG2 cells) or were permeabilized with 70% etha-
nol (detection of total Fas and K8/K18 filaments; luteal
cells only). Both the fixed and the permeabilized cells
were stored at 4°C and −20°C, respectively, until ana-
lyzed by flow cytometry.

Flow cytometric analysis of Fas and K8/K18 expression
Fixed cells (i.e., luteal and HepG2) were washed twice (5
min each) with phosphate buffered saline with 0.1% bo-
vine serum albumin (PBS-BSA) and centrifuged at 276xg
for 5 min at 4°C between each wash. Following the sec-
ond wash, the cells were stained for Fas using a mouse
anti-human Fas antibody (clone CH11; Millipore, Biller-
ica, MA; diluted 1:25 with PBS with 10% normal goat
serum) or an identical concentration of nonspecific,
IgG1 isotype (clone MOPC-21; Sigma) as a control. The
cells were incubated in primary antibody overnight at
4°C and then washed twice (5 min each) with PBS-BSA
with spins at 276xg for 5 min at 4°C between each wash.
Detection of the primary antibody was achieved fluores-
cently using a goat anti-mouse Alexa 488-conjugated IgG
secondary antibody (Invitrogen, Carlsbad, CA) diluted
1:200 with PBS-BSA with 10% normal goat serum. For
detection of K8/K18, luteal cells from CL dissociation
and from culture were washed twice (5 min each) with
PBS-BSA and spun at 276xg for 5 min at 4°C between
each wash. The cells were then incubated for 1 h at 37°C
with a mouse anti-human K18 FITC-conjugated antibody
(clone CY-90; Sigma Aldrich, St. Louis, MO; diluted
1:100 with PBS- BSA). Previously we have shown K18
dimerizes with K8 such that targeting of K18 is sufficient
for the detection of K8/K18 filaments in bovine luteal
cells [16]. Quantification of cells expressing Fas and K8/
K18 was accomplished using a 4 color, dual laser FACS-
calibur flow cytometer (Becton Dickinson Biosciences,
San Jose, CA) with a 488nm argon laser for FITC/Alexa
488 excitation. The negative controls, either IgG1-FITC
(for K18 detection) or Alexa-488 secondary antibody
only (for Fas detection), were used to set the fluorescence
gating to 1% positive controls prior to analysis. The cells
were recorded on the FL-1 filter at no more than 800
events/second with a total of 10,000 recorded events.
Data were collected using Cell Quest (Becton Dickinson
Biosciences, San Jose, CA) and graphs of the results were
generated using WinMDI 2.9 software (Scripps Institute,
La Jolla, CA). Mean fluorescence intensity (MFI), a meas-
ure of staining intensity for each cell, was calculated
using the following equation:

MFI ¼ Geometric mean of sampleð
–Geometric mean of negative controlÞ
=Geometric mean of negative control
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Microscopic evaluation of K8/K18 filaments and
microtubules in bovine luteal cells
Bovine luteal cells cultured in microchamber slides were
used to evaluate microscopically the efficacy and specifi-
city of acrylamide as a disrupter of K8/K18 filaments.
The cells were rinsed twice with PBS, fixed using 4% par-
aformaldehyde in PBS for 20 min on ice, and then stored
in PBS at 4°C until permeabilized with methanol and
analyzed for K8/K18 expression and microtubule expres-
sion (negative control) by fluorescent microscopy. Briefly,
the previously-fixed luteal cells were rinsed twice with
PBS-BSA followed by a 1 h block/permeabilization step
with 0.3% triton x-100 in PBS containing 10% normal
goat serum (Vector Labs, Burlingame, CA) and 3% BSA.
The slides were rinsed 3 × 5 min with PBS-BSA and
incubated overnight at 4°C with either a mouse anti-
human K18 monoclonal antibody (clone CY-90; Sigma
Aldrich, St. Louis, MO; diluted 1:800 in PBS-BSA with
10% normal goat serum), or a mouse anti-bovine alpha-
tubulin monoclonal antibody (clone 236–10501; Invitro-
gen, Carlsbad, CA; diluted 1:200 in PBS-BSA with 10%
normal goat serum). The following day, after 3 × 5 min
washes with PBS-BSA, fluorescent detection of the K18-
containing filaments or tubulin-containing microtubules
was achieved by incubating the slides with a goat anti-
mouse Alexa 488-conjugated IgG antibody (K18; Invitro-
gen, Carlsbad, CA) or a goat anti-mouse Texas Red-
conjugated antibody (microtubules; Santa Cruz, Santa
Cruz, CA). Both secondary antibodies were diluted 1:200
in PBS-BSA with 10% normal goat serum (Vector Labs,
Burlingame, CA). The slides were counterstained with
4',6-diamidino-2-phenylindole (DAPI) mounting medium
(Vector, Burlingame, CA) and then coverslipped.

Statistical analysis
The data were analyzed by 1-way or 2-way ANOVA fol-
lowed by Tukey’s multiple comparison test using the
general linear model of Systat 12.0 (Point Richmond,
CA). Results are expressed as mean ± SEM, with each
experiment repeated three to nine times (i.e., n= 3–9).
For experiments requiring cultured cells, the cells were
cultured in triplicate for a given experiment and were
derived from individual CL or from a frozen stock of
cells (HepG2 cells). Thus, the total number of experi-
ments (n=) is equivalent to the total number of CL or
frozen aliquots (HepG2) used to establish the cultures;
shown in figure legends). Differences among means at a
value of P<0.05 were considered statistically significant.

Results
Fas expression is greater for bovine luteal cells of early
stage CL compared to late stage CL
Freshly dissociated luteal cells from early and late stage
CL were characterized for total Fas expression (Figure 1)
and expression on the cell surface (Figure 2) relative to a
non-specific IgG control. Measurement of plasma pro-
gesterone revealed the cows used to obtain early stage
CL had lower systemic progesterone than cows used for
late stage CL (1.8 ± 0.2 versus 5.9 ± 0.7 ng/ml, respect-
ively; P<0.05, n=6-9 CL/stage). However, a higher per-
centage of luteal cells expressed total Fas in early stage
CL compared to late stage CL (Figure 1A, P<0.05). Mean
fluorescence intensity (MFI), a measure of staining in-
tensity for each cell, was also higher among cells from
early stage CL compared to late stage CL (Figure 1C,
P<0.05). Similarly, the expression of Fas on the cell sur-
face was greater for cells of early stage CL compared to
late stage CL (Figure 2B, P<0.05), as was MFI
(Figure 2C, P<0.05). Overall, quantification of the per-
centage of cells expressing Fas on the cell surface rela-
tive to total Fas expression revealed cells from early
stage CL express the majority of Fas on the cell surface
(76%), whereas less than half these cells from late stage
CL do so (47%). In terms of relative steady-state concen-
trations of Fas mRNA in the luteal tissue, Q-RTPCR
indicated there was no difference between early versus
late stage CL (Figure 3; P>0.05, n=5-7 CL/stage).
Interestingly, a comparison of Fas expression for

freshly dissociated luteal cells versus luteal cells placed
in culture for 24 h revealed that culture alone substan-
tially increased the relative cell surface expression of Fas
for cells of both early and late stage CL. Cell surface ex-
pression of Fas increased from ~65% to ~97% as a result
of culture for cells of early stage CL (P<0.05, n=4 expts.),
and from ~18% to ~66% for cells of late stage CL
(P<0.05, n=4 expts.).

K8/K18 filament expression is increased in bovine luteal
cells of early stage CL compared to late stage CL
A higher percentage of freshly dissociated luteal cells
from early stage CL expressed K8/K18 filaments than
late stage CL (Figure 4, P<0.05). Average number of cells
expressing K8/K18 filaments in early stage CL was 46%
compared to 26% for late stage CL (Figure 4B). In con-
trast to what was observed for cell surface expression of
Fas, culture of luteal cells for 24 h did not enhance K8/
K18 expression in cells of early or late stage CL. Relative
percentage of K8/K18-positive cells was 46% vs. 49% for
freshly dissociated vs. cultured cells, respectively, in early
stage CL, and was 26% vs. 23% for freshly dissociated vs.
cultured cells, respectively, in late stage CL (P>0.05, n=4
expts., data not shown).

Acrylamide-induced disruption of K8/K18 filaments does
not enhance cell surface expression of Fas or cytokine-
induced apoptosis
Exposure of cultured bovine luteal cells to acrylamide
disrupted K8/K18 filaments without adversely affecting



Figure 1 Flow cytometric analysis of total Fas in cells of early and late stage bovine CL. A representative histogram depicting the total
amount of Fas detected in bovine luteal cells of early and late stage CL is shown (Figure 1A). Relative number of cells expressing total Fas is
depicted for early versus late stage CL (Figure 1B). Relative mean fluorescence intensity (MFI) is also depicted for the two stages of CL
(Figure 1C). Values shown are mean ± SEM; different letters indicate significant differences (P<0.05; n=6-9 CL/stage).

Duncan et al. Reproductive Biology and Endocrinology 2012, 10:90 Page 6 of 12
http://www.rbej.com/content/10/1/90
microtubule organization (Figure 5). Cells in control cul-
tures exhibited extensive, filamentous networks of K8/
K18 staining (Figure 5A) that became aggregated around
the perinuclear region of the cells following acrylamide ex-
posure (Figure 5C). Conversely, microtubule organization
when compared between control and acrylamide-treated
cultures remained unaffected (Figure 5B and D, respect-
ively). In addition, there was no observable effect of stage
of CL on these outcomes, and the acrylamide treat-
ment overall had no effect on the number of cells
expressing K8/K18 filaments, luteal cell viability or
progesterone secretion (P>0.05; n=2-4 CL/stage, data
not shown).
Although acrylamide disrupted K8/K18 filaments, no

increase in the cell surface expression of Fas was
observed for luteal cells of either stage of CL
(Figure 6A-C; P>0.05). Moreover, K8/K18 filament dis-
ruption failed to enhance Fas cell surface expression on
specific cells, as reflected by the lack of change in rela-
tive MFI (Figure 6D; P>0.05). Consistent with the obser-
vations of freshly isolated luteal cells, cultured luteal
cells of early stage CL expressed higher amounts of Fas
on the surface than cultured cells of late stage CL
(Figure 6C and D; P<0.05). In contrast, disruption of K8/
K18 filaments in HepG2 cells, using identical
experimental conditions to those for bovine luteal cells,
increased the number of cells expressing Fas on the cell
surface (Figure 7; P<0.05).
Exposure of the cultured bovine luteal cells for 48 h to

a cytokine cocktail consisting of IFN, TNF, and FasL
induced cell death, as expected, but there was no effect
of K8/K18 disruption by acrylamide (P>0.05) or stage of
CL (P>0.05, n= 4 CL/stage) on this outcome (Figure 8).
Similar results were observed when the luteal cells were
exposed to cytokines and acrylamide for only 24 h (data
not shown).

Discussion
The current study is the first to directly measure relative
changes in the expression of Fas on the surface of bovine
luteal cells across the estrous cycle. The observation of
quantifiably higher Fas receptor expression on luteal
cells from early stage compared to late stage CL was un-
expected and somewhat contrary to what was antici-
pated based upon earlier published studies. In these
studies, the investigators examined the gross expression
of Fas mRNA [5,7] and protein [34,35] in ovarian tissues,
without reference to cell-specificity and they found that
Fas increased only in CL undergoing regression. In the
current study, Fas protein was quantified for individual



Figure 2 Flow cytometric analysis of Fas expression on the surface of cells of early and late stage bovine CL. A representative histogram
depicting the expression of Fas on the surface of bovine luteal cells of early stage and late stage CL is shown (Figure 2A). Relative number of
cells expressing Fas on the cell surface is depicted for early versus late stage CL (Figure 2B). Relative mean fluorescence intensity (MFI) for the
two stages of CL is also shown (Figure 2C). Values shown are mean ± SEM; different letters indicate significant differences (P<0.05; n=6-9 CL/stage).
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cells obtained from CL following tissue dissociation and
cell culture, and then analyzed using flow cytometry.
Similarly, Fas mRNA expression for the two stages of CL
was measured by Q-RTPCR. The current methods are
arguably more quantitative than the mRNA detection,
immunoblot analysis, and immunohistochemistry meth-
ods described in the cited studies, but fall short of iden-
tifying specific cell type(s) known to exist within the CL.
Figure 3 Relative expression of Fas mRNA in bovine CL during
the early and late stages of the estrous cycle. Values shown are
mean ± SEM fold-change of Fas expression (normalized using
β-actin). Different letters indicate significant differences (P<0.05;
n=5-7 CL/stage).
Nevertheless, dissociation of the luteal tissue and estab-
lishing serum-free culture conditions, as described,
removes many of the various cell types, while enriching
the population of luteal steroidogenic cells. Thus, we
suggest the pattern of Fas expression observed in the
current study is essentially representative of the luteal
steroidogenic cell population within the bovine CL at
the two extremes of the estrous cycle. Moreover, our ob-
servation of no measureable difference in relative
steady-state amounts of mRNA for Fas in early versus
late stage CL, as evaluated by Q-RTPCR, is consistent
with a previously published study [5].
Overall, a 72% decline in the number of bovine luteal

cells expressing Fas at their cell surface, and a 59% de-
cline in the density of Fas expressed at the cell surface
across the estrous cycle was observed. Total Fas expres-
sion (surface and intracellular) for freshly isolated cells
was higher for early stage CL than late stage CL. A simi-
lar difference in Fas surface expression was observed for
cultured luteal cells, but was further enhanced by culture
alone. Exposure of the cultured cells to the cytokine
cocktail of IFN + TNF + FasL, however, resulted in simi-
lar estimates of cell death for both stages of CL. This
indicates cultured luteal cells from both stages of CL are
equally vulnerable to cytokine-mediated cell death des-
pite clear differences in the cell surface expression of
Fas.



Figure 4 Flow cytometric analysis of K8/K18 expression in cells of early and late stage bovine CL. A representative histogram depicting
the expression of K8/K18 filaments in bovine luteal cells of early stage and late stage CL is shown (Figure 4A). The relative number of cells
expressing K8/K18 filaments is depicted for early stage CL versus late stage CL (Figure 4B). Values shown are mean ± SEM; different letters
indicate significant differences (P<0.05; n=6-9 CL/stage).
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The observation that Fas expression is elevated on lu-
teal cells of early stage CL without further enhancing
their susceptibility to cytokine-induced death indicates
mechanisms exist to protect the cells against Fas-
induced apoptosis. For instance, a soluble secreted iso-
form of Fas has been identified in other tissues that
sequesters FasL prior to binding at the target cell sur-
face, thus preventing cell death [36-38]. This isoform of
Fas lacks the transmembrane domain of wild-type Fas,
causing it to be secreted rather than expressed on the
surface of cells [38]. The murine ovary expresses a
Figure 5 Fluorescent detection of K8/K18 filaments and
microtubules in control and acrylamide-treated cultures of
bovine luteal cells. K8/K18 filaments (green fluorescence) and
microtubules (red fluorescence) were immunostained in cultured
bovine luteal cells following 4 h exposure to vehicle (Control,
Figure 5A and B) or 5mM acrylamide (Figure 5C and D). Cells in
control cultures exhibited a filamentous, K8/K18 intermediate
filament network which spanned the cytoplasm (Figure 5A).
Microtubles of these cells was similarly filamentous (red
fluorescence; Figure 5B). Conversely, cells of acrylamide-treated
cultures exhibited peri-nuclear aggregation of K8/K18 filaments
(Figure 5C), yet the microtubules were unaffected (Figure 5D).
Magnification: 40x.
soluble form of Fas, which has protective effects [36].
Thus, it is possible a soluble form of Fas exists within
the bovine CL to modulate the effect of elevated Fas ex-
pression in early stage CL as seen in the current study.
Certainly this possibility merits additional exploration.
Another intrinsic “protective” mechanism of cells of

early stage bovine CL might include the expression of
membrane-bound splice variants of the Fas receptor.
The cytokine TRAIL (TNF-related apoptosis-inducing
ligand) for example, which is structurally similar to FasL,
binds to receptors, DR4 and DR5, yet membrane-bound
decoy receptors also exist for TRAIL. These receptors,
named DcR1 and DcR2, have a cytoplasmic domain
structurally similar to DR4 and DR5, respectively, but
lack the intracellular death domain necessary for trans-
mitting an apoptotic signal [39-41]. Recently, Sugimoto
and coworkers identified a putative Fas decoy receptor,
DcR3, in granulosa cells of porcine ovaries [42]. Similar
to DcR1 and DcR2, DcR3 contains an extracellular and
cytoplasmic domain similar to wild-type Fas, but lacks
the intracellular death domain. Unlike soluble Fas, the
decoy receptor is expressed on the plasma membrane
and retains its ability to bind FasL, but does not induce
cell death [43]. It is tempting to speculate that a decoy
receptor of Fas may exist on bovine luteal cells, explain-
ing the high prevalence of Fas expression observed for
cells of early stage CL, but not late stage CL, in the
current study. Further research is needed to determine
whether or not a Fas decoy receptor exists within the
bovine ovary, and to explore its possible role in ovarian
function.
Alternatively, enhanced expression of Fas on cells of

early stage CL can be explained by a non-apoptotic or
even proliferative role of Fas in the early stage CL. In re-
cent years, diverse non-apoptotic functions of Fas have
been documented [44], such as the acceleration of liver
regeneration after partial hepatectomy [45], the induc-
tion of cell migration and invasiveness of apoptotic-



Figure 6 Flow cytometric analysis of Fas expression on the surface of cells of early and late stage bovine CL following K8/K18 filament
disruption with acrylamide. Representative histograms depicting the expression of Fas on the surface of bovine luteal cells of early stage and
late stage CL are shown (Figure 6A and B, respectively). The relative percentage of cells expressing Fas on the cell surface is depicted for early
versus late stage CL, and for control versus acrylamide-treated cells (Figure 6C). Relative mean fluorescence intensity (MFI) is also depicted for the
two stages of CL and the treatment conditions (Figure 6D). Values shown are mean ± SEM; different letters indicate significant differences
(P<0.05; n=4 CL/stage).
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resistant tumor cells [46], and the stimulation of cardio-
myocyte hypertrophy [47]. The ability of Fas to control
the fate of the cell likely hinges on the regulation of Fas-
induced downstream signaling events, such as activation/
inhibition of the ERK, JNK, p38, and NF-κB pathways.
These same pathways have suggested roles in luteal cell
function and fate [5,48-50], but their influence on the
developing early CL, especially in the context of elevated
Fas expression, is unknown. Overall, the concept that Fas
Figure 7 Flow cytometric analysis of Fas expression on the surface of
acrylamide. A representative histogram depicting the expression of Fas on
percentage of cells expressing Fas on the cell surface is depicted for contro
± SEM; different letters indicate significant differences (P<0.05; n=3 expts.).
might facilitate development of the CL is consistent with
the premise suggested by Pate and Keyes [51], in which
immune-response mechanisms exist within the ovary to
abate damaging inflammatory responses caused by dead
or dying cells. In the current scenario, these cells would
arise from postovulation trauma during the initial devel-
opment of the CL.
In the present study, acrylamide selectively disrupted

the K8/K18 filaments in the luteal cells, but did not
HepG2 cells following K8/K18 filament disruption with
the surface of HepG2 cells is shown (Figure 7A). The relative
l versus acrylamide-treated cells (Figure 7B). Values shown are mean



Figure 8 Cell death in cultured luteal cells from early and late stage bovine CL following exposure to acrylamide and cytokines. The
relative percentage of cells undergoing death after 48 h exposure to cytokines (Cyto) is depicted for early and late stage CL (Figure 8A and B,
respectively). The cultures were also exposed to a 4 h pretreatment with 5mM acrylamide (Acryl) to disrupt K8/K18 filaments before cytokine
treatment. Values shown are mean ± SEM; different letters indicate significant differences (P<0.05; n=3 expts.).
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enhance Fas expression or otherwise influence Fas-
mediated cell death. In effect, this result did not support
the concept that K8/K18 filaments influence Fas traffick-
ing at the cell surface. However, acrylamide causes inter-
mediate filaments to only partially disassemble and
undergo acute dephosphorylation [30]. Dephosphoryla-
tion provokes a 50% loss of phosphate from the keratin
protein which corresponds with the morphological
changes observed for intermediate filament expression
[27]. At best, the dephosphorylation event is transient,
and the striking changes in intermediate filament
organization are reversible. In fact, the filaments re-
establish their ‘net-like’ organization generally within 12
h after acrylamide removal [29], and complete repho-
sphorylation occurs within 18 h [27]. In the current in-
vestigation, the K8/K18 filaments of bovine luteal cells
were exposed to acrylamide for only 4 h. This was suffi-
cient time to noticeably disrupt the filaments, but per-
haps insufficient to sustain a change in Fas trafficking or
in downstream signaling that would otherwise enhance
cell death. It is noteworthy, however, that these same
conditions increased Fas expression on HepG2 cells in
the current study. For the time-being, we cannot reject
the possibility that K8/K18 filaments influence events
downstream from Fas binding; however, it seems un-
likely that the filaments directly impair Fas expression
on the cell surface as has been suggested in other studies
[20-22].

Conclusions
In conclusion, the elevated expression of Fas on cells of
early stage bovine CL compared to late stage bovine CL
raises a provocative question concerning the physio-
logical role(s) of Fas in the corpus luteum. Although
there is little doubt about the apoptotic function of this
receptor during luteal regression, its purpose during
early luteal development has yet to be defined. We
suggest, as others do, that a broader view of Fas-
mediated activities merits consideration, including the
need to identify the signaling components linking Fas to
non-apoptotic pathways. These insights may provide
new targets to influence fertility, and treat diseases such
as inflammation and cancer.
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