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Abstract
The matrix metalloproteinases (MMPs) and their endogenous inhibitors, tissue inhibitors of
metalloproteinases (TIMPs), may mediate the dramatic structural and functional changes in the
corpus luteum (CL) over the course of its life span. In addition to regulating MMP activity, TIMPs
are also involved in a variety of cellular processes, including cell proliferation and steroidogenesis.
In a series of initial studies, we determined that matrix metalloproteinase inhibitory activity was
present in protein extracts from early (4 days old, estrus = day 0), mid (10–12 days old) and late
(16 days old) CL (n = 3 for each stage). Reverse zymography revealed four metalloproteinase
inhibitory protein bands with relative molecular masses that are consistent with those reported for
TIMP-1 to -4. In order to gain a better understanding of TIMPs and their role in luteal function, we
further characterized this inhibitory activity with a particular focus on the temporal and spatial
expression of TIMP-1 and TIMP-2 in the bovine CL. Northern blotting revealed that the TIMP-1
transcript (0.9 kb) was expressed at a higher (p < 0.05) level in early and mid cycle CL than in the
late stage. In contrast, two TIMP-2 mRNA species, one major 1 kb species and one minor 3.5 kb
species, were significantly (p < 0.05) increased in the mid and late cycle CL than in the early.
Western blotting analyses demonstrated no differences in TIMP-1 (29 kDa) protein levels between
early and mid stages, while its levels decreased (p < 0.05) from the mid to late stage CL. Conversely,
TIMP-2 (22 kDa) protein was detected at a low level in the early CL, but significantly (p < 0.05)
increased in the mid and late stages. Immunohistochemistry revealed that both TIMP-1 and -2 were
localized to large luteal cells from all three ages of CL. TIMP-1 was also localized in capillary smooth
muscle cells, while TIMP-2 was restricted to the endothelial cells in the capillary compartment. In
conclusion, the different temporal expression patterns of TIMP-1 and TIMP-2 suggest that TIMP-1
may be important for luteal formation and development, while TIMP-2 may play significant roles
during luteal development and maintenance. Furthermore, the distinct localization of these two
inhibitors in the vascular compartment indicates that they may serve diverse physiological functions
during different stages of luteal angiogenesis.
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Background
The corpus luteum (CL) is a transient, dynamic endocrine
gland, which develops from the postovulatory follicle [1].
Dramatic structural and functional changes are associated
with the development, maintenance and regression of the
CL [1]. These remodeling events require the participation
of matrix metalloproteinases (MMPs), a growing family of
zinc and calcium dependent proteolytic enzymes that col-
lectively digest all known macromolecules constituting
the extracellular matrix [2,3]. Generally, the catalytic activ-
ity of the MMPs is highly regulated at three levels, gene
expression, proteolytic activation of latent proenzymes,
and inhibition of activity by binding of endogenous tissue
inhibitors of metalloproteinases (TIMPs) to the catalytic
domain [2,4].

Four TIMPs, TIMP-1 [5,6], TIMP-2 [7,8], TIMP-3 [9], and
TIMP-4 [10], have been identified. Among them, TIMP-1
and TIMP-2 are the two most studied inhibitors. TIMP-1,
a glycoprotein with a molecular mass of approximately 29
kDa, was the first member of this family to be cloned [5].
TIMP-1 can bind the active forms of all known MMPs [4]
and the latent form of MMP-9 [11]. In addition to sup-
pressing the activity of MMPs, TIMP-1 also possesses
mitogenic activity for a variety of cell types, such as gingi-
val fibroblasts and erythroid precursor cells [12]. TIMP-1
may regulate steroidogenesis in that it stimulates proges-
terone production by rat granulosa cells [13]. In CL from
a variety of species, the expression of TIMP-1 and TIMP-1-
like proteins and messenger RNA has been determined,
including cow [14,15], sheep [16], rat [17], mouse [18],
monkey [19], and human [20].

TIMP-2 is an unglycosylated protein with an approximate
molecular mass of 22 kDa [7,21]. TIMP-2 is also able to
bind most active MMPs and inhibit their proteolytic activ-
ity [4]. Among the members of the MMP family, TIMP-2
preferentially binds to MMP-2 [21,22]. Paradoxically,
however, TIMP-2 may also be involved in pro-MMP-2
activation by participating in the formation of a mem-
brane type 1-MMP (MT1-MMP)/TIMP-2/pro-MMP-2 tri-
molecular complex on the cell membrane [23–25]. Simi-
lar to TIMP-1, TIMP-2 stimulates proliferation of a variety
of cell types [26]. TIMP-2 mRNA expression has been
determined in the sheep [27], cow [28], human [29], rat
[30], and mouse [18] CL, while a TIMP-2-like protein was
detected in the cow CL [15].

The variety and intensity of events that occur over the CL
life span suggest a tightly regulated temporal and spatial
interplay between MMPs and TIMPs. Our previous studies
demonstrated that remodeling of the bovine CL involves
a variety of MMP species, for example, MMP-2, MMP-9,
and MT1-MMP. In the present study, we determined TIMP
inhibitory activity and profiled the coordinate mRNA and

protein expression patterns and cellular distribution of
TIMP-1 and TIMP-2 in early, mid, and late stages of the
bovine CL obtained over the estrous cycle.

Methods
Animal Model and Tissue Collection
Corpora lutea were collected from cyclic, nonlactating
dairy cows, which were housed at the University of New
Hampshire Dairy Teaching and Research Center. CL were
removed by colpotomy on day 4, 10, and 16 of the estrous
cycle (day 0 = estrus; n = 3 per day). For day 4 CL, the
ovary was removed by an ecraseur after the cow received
an epidural anesthetic [2% (w/v) mepivacaine hydrochlo-
ride; 0.01 mL/kg BW; Upjohn, Kalamazoo, MI], and the
CL was then dissected from ovarian stroma. The day 10
and 16 CL were enucleated from the ovarian stroma.
Based on progesterone concentrations determined by
radioimmunoassay, the CL collected on day 16 of the
estrous cycle were functionally active (8.99 ± 1.84; ng/ml
± SEM). The luteal tissue was subsequently used for total
RNA and protein extraction. All animal experimentation
protocols in the present study were approved by the Insti-
tutional Animal Care and Use Committee (IACUC) at the
University of New Hampshire.

Radiometric MMP Assay
Total protein was extracted from luteal tissues in a lysis
buffer [50 mM Tris-HCl, 150 mM NaCl, 0.02% (w/v)
sodium azide, 10 mM EDTA, 1% (v/v) Triton X-100, 10
µg/ml aprotinin (Sigma, St Louis, MO), 1 µg/ml aminoe-
thyl benzenesulphonyl fluoride (Sigma, St Louis, MO)]
which we previously described [31]. Equivalent amounts
of luteal protein extracts were added to wells of 96-well
microtiter plates containing polymerized 14C-acetylated
collagen in the presence of a known amount of MMP-1
activity from the conditioned medium of bovine corneal
explants [32]. The plates were then incubated at 37°C for
2.5 hours, after which the supernatant containing
degraded 14C-acetylated collagen fragments was collected
and counted in a scintillation counter. A unit is defined as
the amount of protein required to inhibit one unit of cor-
neal collagenase by 50%.

Reverse Zymography
In order to simultaneously distinguish the activity of
TIMP proteins in bovine CL, reverse zymographic analysis
was performed. Equivalent aliquots of CL tissue extracts
were mixed with loading buffer [2% (w/v) SDS, 10% (v/
v) glycerol, 0.1% (w/v) bromophenol blue, 50 mM Tris-
HCl, pH 6.8] and applied to 12% (w/v) polyacrylamide
gels containing 0.1% (w/v) SDS and 0.5 mg/ml gelatin.
After electrophoresis, gels were rinsed twice with 2.5% (v/
v) Triton X-100, followed by incubation with conditioned
medium of human fibrosarcoma HT1080 cells, which is a
rich source of various MMPs, for 4 hours to degrade
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gelatin. After rinsing, gels were incubated overnight at
37°C in substrate buffer (50 mM Tris-HCl, 0.2 M NaCl, 5
mM CaCl2, pH 8.0). Subsequently, gels were stained for
30 minutes with 0.1% (w/v) Coomassie Blue G-250, and
destained with a solution of 30% (v/v) methanol and
10% (v/v) glacial acetic acid. Whereas the MMPs present
in the HT-1080 conditioned medium digest the gelatin
within the gel, the TIMPs in the luteal samples inhibit
MMP action, and were visualized as dark bands on a clear
background. Prestained SDS-PAGE protein standards
(Bio-Rad Laboratories, Hercules, CA) were run in an adja-
cent lane.

Northern Blotting
TIMP-1 and TIMP-2 mRNA expression in the CL was stud-
ied by Northern blotting as described previously [31].
Briefly, total RNA was extracted from luteal tissues using
TRIZOL (GIBCO-BRL, Carlsbad, CA) according to the
manufacturer's instructions. Twenty micrograms of total
RNA were fractionated on 1.0% (w/v) agarose gels con-
taining formaldehyde and were transferred onto
Hybond™-N+ nylon membranes (Amersham Pharmacia
Biotech, Piscataway, NJ). Membranes were first incubated
in pre-hybridization buffer [50% (v/v) formamide, 5×
SSC, 0.2% (w/v) SDS, and 2% (w/v) blocking reagent] for
two hours at 42°C. Hybridization was carried out in the
hybridization buffer containing TIMP-1 [33], TIMP-2 [7],
or cyclophilin (a generous gift from Dr. Robert Thomp-
son, University of Michigan) cDNA probes at 55°C over-
night. These cDNA probes were labeled with digoxigenin
(DIG)-dUTP using the DIG DNA Random-primed Labe-
ling Kit (Roche Molecular Biochemicals, Indianapolis,
IN). The blots were then washed twice at room tempera-
ture in 2× SSC with 0.1% (w/v) SDS, followed by higher
stringency washes in 0.2× SSC with 0.1% SDS at 65°C.
Hybridized probes were detected using an anti-DIG anti-
body conjugated to alkaline phosphatase (used at 1:5000;
Roche Molecular Biochemicals, Indianapolis, IN) in 1%
(w/v) blocking reagent. The signals were detected by
CSPD (Roche Molecular Biochemicals, Indianapolis, IN),
a chemiluminescent substrate for alkaline phosphatase.
The blots were visualized by developing Kodak XAR-5
films with a Konica Medical Film Processor (Tokyo,
Japan).

Western Blotting Analysis
Equivalent amounts of tissue protein extracts were sub-
jected to SDS gel electrophoresis on 12% (w/v) polyacry-
lamide gels under reducing conditions before transfer
onto nitrocellulose membranes (Schleicher & Schuell,
Keene, NH). Prestained SDS-PAGE protein standards
(Bio-Rad Laboratories, Hercules, CA) were also loaded in
an adjacent lane. Nonspecific binding sites were blocked
with 5% (w/v) nonfat powdered milk in TBST [0.01 M
Tris-HCl, 0.15 M NaCl, and 0.05% (v/v) Tween-20, pH

8.0] for 2 hours. Two primary antibodies, mouse anti-
human TIMP-1 monoclonal antibody (Oncogene
Research Products, Cambridge, MA) and mouse anti-
human TIMP-2 monoclonal antibody (Oncogene
Research Products, Cambridge, MA), were used at 1 µg/ml
and 2 µg/ml, respectively. After an overnight incubation at
4°C, the membranes were washed five times with TBST
(each time for 15 minutes), followed by a 1-hour incuba-
tion with goat anti-mouse IgG conjugated to horseradish
peroxidase (1:15,000, Pierce, Rockford, IL) at room tem-
perature. The blots were then washed with TBST, and
developed using the SuperSignal® West Pico Chemilumi-
nescent Substrate (Pierce, Rockford, IL), according to the
manufacturer's instructions.

Immunohistochemistry
Frozen tissue sections (6 µm) were cut onto Superfrost®/
Plus slides (Fisher Scientific, Pittsburg, PA). Sections were
air-dried at room temperature for 5 min before a 10-min
fixation in cold acetone. Endogenous peroxidase activity
was quenched by incubating with 0.3% (v/v) hydrogen
peroxide for 30 min. Nonspecific binding was blocked by
5% (w/v) BSA for 30 min. Sections were subsequently
incubated at room temperature for 1 hour with a 1:40
dilution of mouse anti-human TIMP-1 monoclonal anti-
body (Oncogene Research Products, Cambridge, CA) or
with a 1:50 dilution of mouse anti-human TIMP-2 mono-
clonal antibody (Oncogene Research Products, Cam-
bridge, CA). After washing, slides were incubated with
goat anti-mouse IgG followed by VECTASTAIN® Elite ABC
Kit (Vector Laboratories, CA), according to the manufac-
turer's instructions.

To further determine the presence of vascular smooth
muscle cells (VSMC) and endothelial cells in the luteal tis-
sue, consecutive sections were also stained with an anti-
body against α-actin and von Willebrand Factor (VWF),
cellular markers for VSMC and endothelial cells, respec-
tively [34]. For every tissue, an adjacent section placed on
the same slide was used as a negative control, where BSA
substituted for the primary antibody. For each tissue (3
corpora lutea for each age), 10 to 20 sections were stained.
A minimum of 20 areas was examined.

Data Analysis
Intensities of Northern and Western blots, in which each
sample was run in triplicate, were determined by UN-
SCAN-IT™ digitizing software system (Silk Scientific,
Orem, UT). The data were analyzed by ANOVA, followed
by Tukey's test for multiple comparisons.

Results
Metalloproteinase Inhibitor Activities in the Bovine CL
The radiometric MMP assay for TIMP activity revealed that
the protein extract from all three ages of CL possessed
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significant metalloproteinase inhibitory activity (inhibi-
tory units per gram total protein ± SEM; day 4, 22,933 ±
1703; day 10, 24,066 ± 33; day 16, 22,166 ± 2938). How-
ever, there was no significant difference (P > 0.05) among
the three stages of CL studied. Based on these observa-
tions, reverse zymography was then used to distinguish
metalloproteinase inhibitory activities in luteal tissues.
Four protein bands were identified, and they migrated at
~30 kDa, ~27 kDa, ~24 kDa, and ~22 kDa, corresponding
to the molecular masses reported for TIMP-1, -3, -4, and -
2, respectively (Figure 1). TIMP-1 appeared to be the pre-
dominant TIMP present in the bovine CL.

TIMP-1 and TIMP-2 mRNA Expression in the Bovine CL 
during the Estrous Cycle
Northern blotting demonstrated that a single TIMP-1
transcript (0.9 kb) was present in all three ages of CL (Fig-
ure 2A). The 18S rRNA was used to normalize sample
loading. The densitometric ratio of TIMP-1 mRNA to 18S
rRNA was high in the early and mid cycle CL, but
decreased significantly (p < 0.05) in the late stage (Figure
2B). The same pattern was observed when cyclophilin was
used to normalize sample loading.

Two TIMP-2 mRNA species, a major one at 1 kb and a
minor one at 3.5 kb, were present in all ages of CL (Figure
3A). In contrast to the expression pattern of TIMP-1
mRNA, both species of TIMP-2 mRNA, shown as the den-
sitometric ratio of TIMP-2 mRNA to a house-keeping gene
cyclophilin, were low in the early stage, but increased sig-

nificantly (p < 0.05) in the mid and late cycle CL (Figure
3B). The same pattern was observed when 18S RNA was
used to normalize sample loading.

TIMP-1 and TIMP-2 Protein Levels in the Bovine CL
Western blotting revealed an approximate 30 kDa immu-
noreactive TIMP-1 protein band in all ages of CL exam-
ined (Figure 2C). The level of TIMP-1 protein was not
different between the early and mid cycle CL (p = 0.324),
but it was significantly decreased (p < 0.05) in the late
stage CL (Figure 2D). In addition, a 22 kDa TIMP-2
immunoreactive protein was also observed in all three
ages of CL (Figure 3C). The TIMP-2 protein level in the
mid and late cycle CL was significantly greater (p < 0.05)
than in the early stage (Figure 3D).

Cellular Localization of TIMP-1 and TIMP-2 Proteins in 
the Bovine CL
Immunohistochemistry using TIMP-1 and TIMP-2 spe-
cific antibodies demonstrated that TIMP-1 was present in
both large luteal cells and vascular smooth muscle cells
(Figure 4A,4C, and 4E). The localization of TIMP-1 in the
VSMC compartment was validated by staining for α-actin,
a cellular marker for VSMC (Figure 4G). Although large
luteal cells from all three ages of CL expressed TIMP-1, vis-
ual observations revealed that the highest level of expres-
sion was in cells of the mid-cycle CL (Figure 4C). TIMP-1
was expressed in VSMC of the early (Figure 4A) and late
(Figure 4E), but not the mid cycle CL (Figure 4C). In all
ages of CL, endothelial cells, as validated by staining with
an endothelial cell marker VWF (Figure 4H), and large
luteal cells showed positive staining for TIMP-2 protein
(Figure 4B,4D and 4F). No positive signals were observed
in the sections devoid of primary antibodies against
TIMP-1 or TIMP-2 (data not shown).

Discussion
In order to eventually elucidate the physiological roles of
TIMP-1 and TIMP-2 in the CL, we first determined the
temporal and spatial expression patterns of these two
inhibitors during the estrous cycle.

In the present study, TIMP-1 mRNA was determined to be
highly expressed in the early and mid cycle bovine CL, but
decreased in the late stage. In the porcine CL, the TIMP-1
transcript was also highly expressed in the early stage, and
is slightly reduced as the estrous cycle progresses before it
decreases significantly in the regressing stages [35]. In
contrast, TIMP-1 mRNA expression in the ovine [16] and
human [29] CL does not change throughout the estrous or
menstrual cycle, respectively. In the pseudopregnant rat, a
different pattern emerges whereby the strongest TIMP-1
mRNA expression is observed during CL formation and
regression [36]. Clearly, there are species differences with

Reverse zymographic analysis of tissue inhibitors of metallo-proteinases (TIMPs)Figure 1
Reverse zymographic analysis of tissue inhibitors of metallo-
proteinases (TIMPs). Inhibitor activities in the early (E), mid 
(M), and late (L) stages of bovine CL are shown. Lane 1 indi-
cates the prestained SDS-PAGE standards (STD; Bio-Rad 
Laboratories, Hercules, CA). Their corresponding molecular 
masses (kDa) are indicated on the left. Four bands possessing 
MMP inhibitory activities (indicated by arrows on the right) 
were observed in luteal samples. These bands correspond to 
TIMP-1 (~30 kDa), TIMP-3 (~27 kDa), TIMP-4 (~24 kDa), 
and TIMP-2 (~22 kDa), respectively.
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Page 4 of 11
(page number not for citation purposes)



Reproductive Biology and Endocrinology 2003, 1 http://www.rbej.com/content/1/1/85
TIMP-1 mRNA and protein expression in the bovine CLFigure 2
TIMP-1 mRNA and protein expression in the bovine CL. A) Northern blotting of TIMP-1 mRNA in early (E), mid (M), and late 
(L) stage CL is shown in the upper panel. The arrow indicates the 0.9 kb TIMP-1 transcript. The ethidium bromide stained 18S 
rRNA in corresponding luteal samples is shown in the lower panel. B) Changes in TIMP-1 mRNA, expressed as a densitomet-
ric ratio of TIMP-1 mRNA to 18S rRNA, are shown in the lower panel. Dissimilar letters denote significant difference at p < 
0.05. C) A representative Western blot of TIMP-1 in early (E), mid (M), and late (L) stage CL. Conditioned medium of HT1080 
cells (HT) was loaded in the first lane and was used as a positive control. D) TIMP-1 protein levels in different stages are pre-
sented as a ratio of band intensity in luteal samples to that in HT1080 conditioned medium. Dissimilar letters denote significant 
difference at p < 0.05.
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TIMP-2 mRNA and protein expression in the bovine CLFigure 3
TIMP-2 mRNA and protein expression in the bovine CL. A) In the upper panel, Northern blotting of TIMP-2 mRNA in early 
(E), mid (M), and late (L) stage bovine CL. The arrows indicate the 3.5 and 1 kb species. The lower panel is the same membrane 
hybridized with a human cyclophilin probe. B) Densitometric ratios of each TIMP-2 mRNA band to cyclophilin in correspond-
ing stages are shown. Dissimilar letters denote significant difference at p < 0.05. C) A representative Western blot of TIMP-2 
in the bovine CL. Molecular masses (kDa) of protein standards are shown on the left. A single 22 kDa TIMP-2 immunoreactive 
protein band, indicated by the arrow, is present in early (E), mid (M), and late (L) stage CL. D) Densitometric analysis of TIMP-
2 protein expression among different stages of CL. Dissimilar letters denote significant difference at p < 0.05.
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Immunohistochemistry of TIMP-1 (A, C, E; ×200) and TIMP-2 (B, D, F; ×400) in early (A and B), mid (C and D), and late (E and F) stage CLFigure 4
Immunohistochemistry of TIMP-1 (A, C, E; ×200) and TIMP-2 (B, D, F; ×400) in early (A and B), mid (C and D), and late (E and 
F) stage CL. Vascular smooth muscle cells and endothelial cells are identified by staining with α-actin (G; ×200) and VWF (H; 
×400). Positive staining (red color) is observed in large luteal cells (white arrows), endothelial cells (black arrows), and vascular 
smooth muscle cells (white triangles).
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regard to the temporal expression of TIMP-1 transcript in
the CL.

The expression of TIMP-1 protein in three ages of bovine
CL was also demonstrated in the present study. Reverse
zymography demonstrated that TIMP-1 was the predomi-
nant TIMP in the bovine CL, similar to the finding in
sheep [37]. In the present study, the patterns of TIMP-1
protein and mRNA paralleled each other, being high in
the early and mid stages, but decreased in the late cycle
CL. The high levels of TIMP-1 in the early and mid cycle
CL may participate in regulating the extensive tissue
remodeling events that occur during CL formation and
development. The reduced TIMP-1 mRNA and protein
expression in the late stage CL may portend the decline of
this inhibitor observed during luteal regression in bovine
[38], ovine [39,40], porcine [35], and primate [19] CL.
Collectively, these data implicate TIMP-1 as an important
player in the physiology of the CL.

The TIMP-1 protein was localized in large luteal cells of
early, mid, and late stage bovine CL. In the ovine CL,
TIMP-1 was co-localized with oxytocin in secretory gran-
ules of large luteal cells [41]. In addition, TIMP-1 expres-
sion was also detected in isolated ovine [16] and porcine
[35] large luteal cells, and luteinized human granulosa
cells [42]. The presence of TIMP-1 in steroidogenic cells
may be associated with its ability to enhance steroid pro-
duction [13]. This may be related in part to a 124 bp-
nucleotide sequence similarity between the protein cod-
ing region of the bovine steroidogenic acute regulatory
(StAR) gene and the 5' non-coding region of TIMP-1 [43].
Additionally, although female mice lacking the TIMP-1
gene do not show detectable differences in serum estra-
diol-17β concentrations when compared to the wild type,
the TIMP-1 deficient male mice have higher concentra-
tions of total serum testosterone than the wild type
[44,45]. Furthermore, cell culture studies demonstrated
that TIMP-1 is able to increase estradiol-17β production
by granulosa cells from both TIMP-1 deficient and wild-
type mice [44], and estradiol-17β and progesterone pro-
duction from porcine thecal cells [46]. Therefore, the
strong expression of TIMP-1 in large luteal cells may be
related to its collateral role in steroidogenesis.

Because of the predominant expression of TIMP-1 in large
luteal cells, this inhibitor is used as a cellular marker for
this cell type [47]. However, other cell types in the CL are
positive for TIMP-1 expression as well. For example, the
present study showed that TIMP-1 was also localized in
the vascular smooth muscle cells (VSMC) of the bovine
CL. Although the cellular source was not specified, the
capillary compartments in ovine [41] and rat [48] CL stain
positively for TIMP-1. The localization of TIMP-1 in the
vascular smooth muscle compartment supports its poten-

tial role during angiogenesis and vascular maintenance.
Indeed, overexpression of TIMP-1 in VSMC by exogenous
gene transfer reduced VSMC cell proliferation and migra-
tion [49,50]. In addition, stimulation of TIMP-1 expres-
sion impaired angiogenesis in a variety of tumor types
[51–53]. These data collectively suggest that TIMP-1 may
act as a negative regulator of blood vessel formation
[32,54].

Extensive angiogenesis occurs during early CL develop-
ment when theca-derived luteal cells and fibroblasts
invade through the breached basement membrane into
the cavity of the ruptured follicle. These early events in the
angiogenic process require MMP activity. However, in the
last step of angiogenesis, recruitment and maintenance of
pericytes (VSMC) are critical for vascular maturation and
survival [55,56]. Thus, the high level of TIMP-1 expression
in VSMC of 4-day old bovine CL may provide an environ-
ment where MMP action was curbed as the vasculature
matures. As the CL ages, its structure remains relatively
stable. Although angiogenesis is ongoing, it is slowed dur-
ing CL maintenance [57–59]. This may be the reason for
the absence of TIMP-1 in the VSMC compartment at this
stage of the bovine estrous cycle. In the 16-day old CL,
TIMP-1 was detected again in the VSMC compartment.
This localized expression of TIMP-1 is consistent with the
hypothesis of Redmer et al. [60], who proposed that
maintenance of the vasculature may be necessary for the
transport of degraded products during luteal regression,
which ultimately results in a massive decrease in CL size
and weight as regression ensues.

Although TIMP-1 was the most abundant TIMP in luteal
tissues, the other three TIMPs were also detected in the
bovine CL by reverse zymography. Among them, we chose
to focus our attention on TIMP-2. It has been reported
that TIMP-2 may be involved in the pro-MMP-2 activation
process by binding an MT1-MMP to form a "co-receptor"
for pro-MMP-2 on the cell surface [25]. This bound pro-
MMP-2 would then be presented to an adjacent MT1-
MMP for activation [23,25]. Although a transmembrane-
deleted MT1-MMP is capable of activating pro-MMP-2
without the participation of TIMP-2 [61], TIMP-2 defi-
cient mice have a dramatically reduced ability to activate
pro-MMP-2 [62]. In the present study, both TIMP-2
mRNA and protein levels were low in the early CL, but sig-
nificantly increased in the mid and late stages. This expres-
sion pattern was similar to that for active MT1-MMP and
MMP-2 [31], suggesting that the MT1-MMP/TIMP-2/pro-
MMP-2 tri-molecular system may be available for MMP-2
activation in vivo in the bovine CL. The coordinate expres-
sion of these three molecules is also observed during
embryonic development [63], which supports the pres-
ence of this activation system in a variety of tissue types.
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In addition to the temporal correlation of TIMP-2 with
active MT1-MMP and MMP-2 expression in the CL, TIMP-
2 was also co-localized with these two molecules in
endothelial and large luteal cells. TIMP-2 has a variety of
functions in endothelial cells. On the one hand, the stoi-
chiometrically correlated expression with MT1-MMP and
pro-MMP-2 may facilitate the activation process of pro-
MMP-2[31], which is critical for the angiogenesis proc-
ess[64]. On the other hand, inhibition of angiogenesis by
TIMP-2 cannot be excluded since TIMP-2 has now been
demonstrated to be a potent inhibitor of both physiolog-
ical and stimulated angiogenesis in vivo[54] and over-
expression of TIMP-2 blocks vascular smooth muscle cell
invasiveness [65] and reduces angiogenic ability [54,66].
The latter observation is due, in part, to down-regulation
of vascular endothelial cell growth factor (VEGF) [67].

The localization of TIMP-2 in large luteal cells may also
contribute to the activation of pro-MMP-2 in this cell type
by assembling the trimeric complex on the cell mem-
brane. The in situ activated MMP-2 is then able to bind
integrin αvβ3 [68], where localized pericellular proteoly-
sis ensues. This resulting degradation of the ECM is
needed to accommodate the enlargement of large luteal
cells from the early to mid and late stages. Although there
is no direct evidence demonstrating involvement of TIMP-
2 in steroidogenesis, the dynamic interactions between
large luteal cells and their local ECM may induce bio-
chemical changes related to the steroid biosynthetic proc-
ess in this cell type [69]. For example, disruption of the
links between ECM, integrins, and the cytoskeleton [70]
may perturb the intracellular transport of substrates, such
as cholesterol, for steroidogenesis [71]. Additional in vitro
and in vivo studies are needed to elucidate the physiolog-
ical roles of these TIMPs in this ovarian endocrine gland.

Conclusions
The present study demonstrates that TIMP-1 and TIMP-2
exhibit a coordinated expression pattern in the bovine CL
throughout the estrous cycle. The distinct temporal and
spatial expression patterns of TIMP-1 and TIMP-2 suggest
that these two inhibitors may have multiple and comple-
mentary roles in luteal development and angiogenesis
during the life span of the CL. Taken together, the expres-
sion of these multi-functional TIMPs and MMPs during
the bovine estrous cycle suggests that they are key regula-
tors of CL physiology.
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