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Abstract 

In vitro maturation (IVM) of human immature oocytes has been shown to be a viable option for patients at risk 
of ovarian hyperstimulation syndrome (OHSS), those seeking urgent fertility preservation and in circumstances 
where controlled ovarian stimulation is not feasible. Moreover, IVM techniques can be combined with ovarian tissue 
cryobanking to increase the chances of conception in cancer survivors. The clinical applications of IVM in the field 
of reproductive medicine are rapidly expanding and the technique is now classified as non‑experimental. In contrast 
to conventional IVF (in vitro fertilization), IVM offers several advantages, such as reduced gonadotropin stimulation, 
minimal risk of ovarian hyperstimulation syndrome (OHSS), reduced treatment times and lower costs. However, 
the technical expertise involved in performing IVM and its lower success rates compared to traditional IVF cycles, still 
pose significant challenges. Despite recent advances, such as innovative biphasic IVM systems, IVM is still an evolving 
technique and research is ongoing to refine protocols and identify techniques to improve its efficiency and effective‑
ness. A comprehensive understanding of the distinct mechanisms of oocyte maturation is crucial for obtaining more 
viable oocytes through in vitro methods, which will in turn lead to significantly improved success rates. In this review, 
the present state of human IVM programs and future research directions will be discussed, aiming to promote a bet‑
ter understanding of IVM and identify potential strategies to improve the overall efficiency and success rates of IVM 
programs, which will in turn lead to better clinical outcomes.

Keywords Fertility preservation, Immature oocytes, In vitro maturation (IVM), Maturation mechanism, Ovarian 
Hyperstimulation syndrome (OHSS)

Background
Oocyte In  vitro maturation (IVM) is a technique in 
assisted reproductive technology (ART) that involves 
the maturation of immature oocytes obtained from small 
antral follicles. Since the first IVM baby was born in 
1991 [1], the use of IVM has been credited with approxi-
mately 5000–6000 live births [2]. In recent years, IVM 

has gained popularity in the field of reproductive medi-
cine, and it is being used for carefully selected patients 
at risk of ovarian hyperstimulation syndrome (OHSS) or 
seeking fertility preservation.  The clinical applications 
of IVM have expanded to include patients experiencing 
repeated failures in assisted reproduction due to resist-
ant ovary syndrome and poor responders [3–5]. Recently, 
the American Society of Reproductive Medicine (ASRM) 
has acknowledged the usefulness of IVM in certain clini-
cal applicationsand has declared it to be nonexperimental 
[6]. Overall, IVM of human immature oocytes remains 
a relevant and valuable technique in the field of assisted 
reproduction and fertility preservation.

The complexity involved in performing IVM and its 
generally lower success rates compared to conventional 
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IVF remain significant challenges [7–9]. Additionally, 
advancements in antagonist cycles, GnRH agonist trig-
gering, and elective cryopreservation strategies have led 
many IVF centers to prefer easier treatment methods for 
infertility patients, resulting in a limited number of cent-
ers currently performing the IVM procedure.

The lower efficiency of human IVM programs can be 
attributed to the quantity and quality of oocytes obtained 
during IVM cycles. Firstly, the rate of oocyte retrieval 
and IVM after in vitro culture is lower compared to con-
ventional controlled ovarian hyperstimulation (COH) 
cycles. Secondly, the overall quality of oocytes derived 
from current IVM culture systems tends to be inferior to 
naturally matured oocytes in vivo [10]. Therefore, ongo-
ing research and improvements of the IVM program 
are necessary to offer valuable solutions and additional 
options to individuals facing fertility challenges.

In this review, the present state of human IVM pro-
grams and future research directions will be discussed, 
aiming to promote a better understanding of IVM and 
identify potential strategies to improve its efficiency and 
success rates.

Methods
This review is grounded in content obtained through 
electronic search of PUBMED. It encompasses articles 
related to IVM published in the English language.

Oocyte maturation
A Comprehensive understanding of the distinct mecha-
nisms of oocyte maturation both in  vivo and in  vitro 
environments is crucial for obtaining more viable oocytes 
through in vitro methods.

The maturation of oocytes can be divided into two 
essential aspects: nuclear maturation and cytoplasmic 
maturation [11]. Nuclear maturation primarily involves 
the process of meiosis, which is responsible for the 
reduction of the chromosomal number in the oocyte. It 
starts from the Prophase-I stage (germinal vesicle (GV-) 
stage) where the oocyte is arrested. Meiotic resumption 
is characterised by GV breaks down (GVBD), chroma-
tin condensation and the formation of the meiotic spin-
dle. The oocyte then undergoes the first meiotic division, 
leading to the extrusion of the first polar body and the 
formation of a mature metaphase II (MII) oocyte, which 
has a haploid chromosomal complement (Table  1). At 
this stage, the oocyte is arrested again, and it awaits ferti-
lization [11].

Cytoplasmic maturation is a vital process occurring 
concurrently with nuclear maturation in the oocyte. It 
involves metabolic and structural changes, including 
the accumulation of factors and rearrangement of orga-
nelles like mitochondria and the endoplasmic reticulum 

[11, 12] (Table 1). These changes ensure proper support 
for fertilization and embryo development. Synchroni-
zation of both nuclear and cytoplasmic maturation is 
crucial for successful fertilization and the healthy devel-
opment of the embryo [11].

In vivo oocyte maturation
In vivo, oocyte maturation is regulated by hormonal 
signals, interactions with somatic cells, and transcrip-
tion factors controlling gene expression [13]. In a regu-
lar menstrual cycle, one dominant follicle develops into a 
preovulatory follicle, where the oocyte remains arrested 
at Prophase-I stage until the surge of ovulatory lutein-
izing hormone (LH) [11]. This meiotic arrest is main-
tained by high levels of intracellular cyclic adenosine 3’, 
5’-monophosphate (cAMP) within the oocyte, keeping 
it at the GV-stage [14–20]. The communication between 
the oocyte and cumulus cells (CCs) through gap junc-
tions is crucial for regulating oocyte maturation [21]. 
Throughout follicle growth, this communication is essen-
tial for providing nutrients, energy substrates, and factors 
that support oocyte maturation and developmental com-
petence [21].

Animal research has identified three mechanisms 
that help maintain high cAMP levels within the oocyte, 
regulating oocyte maturation and meiotic progression: 
(1) The oocyte itself produces cAMP [15, 16], (2) cAMP 
produced by CCs enters the oocyte through gap junc-
tions [21], and (3) cGMP produced by granulosa cells 
passes through gap junctions into the oocyte [17–20] 
and inhibits the hydrolysis of cAMP by oocyte-specific 
phosphodiesterase (PDE) [22, 23]. Guanylate cyclase 
receptor natriuretic peptide receptor 2 (NPR2) mediates 
cGMP production in granulosa cells through the action 
of their ligand C-type natriuretic peptide (CNP) [24]. The 
elevated intra-oocyte cAMP concentration leads to high 
protein kinase A (PKA) activity, which phosphorylates 
cell cycle components, including the meiosis-promoting 
factor (MPF), ultimately blocking meiotic progression.

Following the LH surge, oocyte maturation in  vivo is 
initiated through cascade signalling pathways and physi-
ological changes within the preovulatory follicles. LH 
activation of mural granulosa cells leads to the expression 
of epidermal growth factor (EGF)-like growth factors 
such as betacellulin, amphiregulin (AREG), and epiregu-
lin [25–27]. These EGF-like growth factors bind to their 
receptors in CCs and activate the mitogen-activated pro-
tein kinase (MAPK) pathway. The activation of MAPK 
induces the synthesis of meiosis resumption-inducing 
factors and impedes the functioning of gap junctions. 
Simultaneously, the LH surge deactivates NPR2 and acti-
vates cGMP PDE, causing a rapid decline in cGMP levels 
within the follicle [28]. This decrease in cGMP supply to 
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the oocyte leads to a subsequent drop in cAMP levels, 
inactivation of PKA, dephosphorylation of key compo-
nents, and the initiation of meiosis.

Physiologically, the LH surge triggers the enlargement 
of the Graafian follicle. The surrounding CCs undergo 
expansion, crucial for oocyte maturation. Hyaluronan 
(HA) synthesized by Hyaluronan synthase 2 (HAS2) in 
CCs plays a significant role in this process [29, 30]. Solu-
ble factors like differentiation factor-9 (GDF-9), morpho-
genetic protein 15 (BMP-15), and BMP-6, produced by 
the oocyte, actively participate in HA synthesis and CCs 
expansion [31, 32]. These factors stimulate HAS2 gene 
expression, promoting CCs expansion in the presence of 
FSH [31, 32]. The expanded CCs disrupt gap junctions in 
the COCs, stopping cAMP and cGMP transport, leading 
to oocyte meiotic resumption via MPF activation [33]. 
These coordinated molecular signals ensure successful 
oocyte maturation within the follicle.

Laboratory and clinical aspects of IVM
In vitro oocyte maturation
Compared to the natural oocyte maturation process that 
occurs in  vivo, IVM lacks the signalling mechanisms 
responsible for maintaining oocyte arrest in Prophase-I 
stage. This is due to the extraction of oocytes from the 
follicular environment, leading to the loss of influences 
including CNP from somatic cells and follicular fluid. 
Consequently, immature oocytes retrieved from antral 
follicles in  vitro undergo spontaneous meiotic matura-
tion independent of hormonal regulation. This sponta-
neous maturation leads to the premature breakdown of 
gap junctions between the oocyte and CCs. As a result, 
valuable CCs metabolites such as nucleotides, nutrients, 
and mRNA, which play a role in oocyte cytoplasm matu-
ration, are lost. This factor represents a significant barrier 

to the generation of high-quality embryos from IVM 
oocytes.

The conventional approach to IVM involves culturing 
immature COCs from the Prophase-I to reach the met-
aphase II (MII) stage without the administration of any 
gonadotropins [34]. However, in clinical human IVM 
programs, it is common to use in  vivo stimulation with 
gonadotropins to improve the quality and quantity of 
oocytes. This stimulation can include a few days of gon-
adotropin (FSH) treatment, a single ovulatory dose of 
human chorionic gonadotropin (hCG), or a combination 
of FSH and hCG [34].

FSH priming
Ovarian stimulation with a few days of FSH priming is 
often used in clinical IVM programs. Animal studies 
have suggested that in  vivo FSH priming enhances fol-
licular development and the meiotic and developmen-
tal competence of immature oocytes and decreases the 
time required to reach the MII stage [35, 36]. Likewise, 
in human IVM programs, FSH priming has been found 
to improve oocyte yield and maturation rates, resulting 
in more mature oocytes.  The rationale for pretreating 
a patient with FSH is that human follicles with a diam-
eter of 2–6 mm have a high expression of FSH recep-
tors, and FSH augments follicular growth and estradiol 
production.

As FSH priming does not induce oocyte meiotic 
resumption in  vivo, immature compact COCs are 
obtained after oocyte retrieval [37] (Fig.  1A). There is 
no consensus, however, on the dose and duration of FSH 
priming in IVM cycles. Wynn et al. [38] suggested that a 
short course of FSH treatment (600 IU for 5 days, from 
day 2 of the menstrual cycle), improved the oocyte mat-
uration rate in vitro. In a small, randomized study in 28 
women with PCOS, the percentage of oocytes reaching 

Fig. 1 Cumulus‑oocyte complex (COC) retrieved from FSH‑ or hCG‑primed IVM cycles. A Oocytes just after oocyte retrieval in FSH‑primed IVM 
cycles (Original magnification X100). B Oocytes just after oocyte retrieval in hCG‑primed IVM cycles. (Original magnification X20)
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the MII stage was significantly higher in women who 
had undergone FSH priming (150 IU recombinant FSH 
for 3 days, starting on day 3 of the cycle), compared with 
the non-primed group [39]. Other authors have also 
reported using 150 IU FSH daily for 2–3 days, starting 
from day 2 or 3 of the cycles or after a progestin with-
drawal bleed [40].

Despite the rationale of FSH priming in IVM,  FSH 
priming alone without hCG did not result in improved 
clinical outcomes in women without PCOS [41]. Like-
wise, Mikkelsen et  al. [42] found that FSH priming did 
not improve the maturation potential of in vitro matured 
human oocytes. In PCOS patients, Mikkelsen and Lin-
denberg [43] suggested that FSH priming may improve 
the oocyte developmental competence whereas other 
authors did not find any significant differences [44, 45].

hCGpriming before oocyte retrieval
Researchers have suggested that hCG may promote the 
initiation of oocyte maturation in  vivo and improve the 
maturation rate of IVM oocytes, thereby improving preg-
nancy rates. In conventional IVF cycles, the maturation 
of immature prophase-I stage oocytes, especially those 
with expanded CCs, tends to be more successful. The 
integration of hCG priming in IVM cycles aims to mimic 
the conditions seen in conventional IVF cycles, where 
expanded CCs correlate with better maturation rates.

In a prospective randomized study in patients with 
PCOS, the percentage of oocytes achieving maturation at 
48 h was significantly higher in the hCG primed group 
than in the non-hCG primed group [46]. Conversely, 
other studies did not find any significant differences in 
developmental competence of the oocytes or in clinical 
outcomes [47]. Additionally, Fadini  et al. [41] reported 
that hCG priming alone has no beneficial effect on the 
clinical outcome in patients without PCOS.

Several studies have described hCG triggering com-
bined with FSH priming in IVM cycles with variable 

outcomes. Lin et al. [48] did not observe any additional 
benefit from FSH priming in hCG-primed IVM cycles 
in PCOS women. However, Fadiniet al. [41] in a pro-
spective randomized study, reported a significantly 
higher clinical pregnancy rate in FSH plus hCG primed 
cycles, although FSH priming and hCG priming alone 
showed no significant differences in clinical outcomes. 
In a large retrospective cohort study of 921 women with 
PCOS who underwent IVM cycles with FSH priming 
with hCG triggering, the authors reported a cumulative 
live birth rate of 33.7% after one IVM cycle [49]. Son 
et al. [45] observed that in vivo matured oocytes can be 
collected from small follicles measuring < 10 mm at the 
time of oocyte retrieval (Fig.  2) and sometimes more 
than one  in vivo  matured oocyte can be retrieved in 
hCG-primed IVM cycles of PCO patients [50]. Further-
more, the authors reported that the matured oocytes 
retrieved from small follicles (< 10 mm) generated 
embryos of similar developmental potential to oocytes 
derived from larger follicles (≥ 10 mm), resulting in 
better pregnancy rates.  However, a recent Cochrane 
review found no conclusive evidence that hCG trigger-
ing before oocyte retrieval in IVM cycles influenced 
live birth, pregnancy or miscarriage rates, although the 
quality of evidence was low [51].

Although the use of a GnRH agonist trigger before 
oocyte retrieval has been described in a case report 
[52], more evidence is needed before it can be routinely 
used in clinical practice.

Initially, since antral follicles are mostly under 12 
mm, assessing in  vivo matured oocytes on collection 
day was omitted [46]. Granulosa cells lacked LH recep-
tors, signalling incomplete in vivo maturation. Yet, Son 
et al. [45, 53] identified in vivo mature oocytes via hCG 
priming, highlighting their high reproductive capacity 
[34, 45, 53]. This finding has led to debate among scien-
tists about the role of hCG in IVM programs [54, 55].

Fig. 2 Cumulus − oocyte complex morphology of oocytes with expanded cumulus cells (CC) collected from < 10mm size of follicles in hCG‑primed 
IVM cycles. A Metaphase II (MII)‑stage oocyte with little expanded corona radiata. B Germinal vesicle (GV)‑stage oocyte with little expanded corona 
radiata. Original magnification (× 200). PB = 1st polar body
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Timing of oocyte retrieval
Selection of the optimal day for oocyte retrieval in IVM 
cycles differs widely between groups. While some inves-
tigators have proposed waiting for the leading follicle to 
reach 10 mm [42, 56], others believed that this would be 
detrimental and suggested cancelling the cycle [57, 58]. 
In a study involving 160 women with polycystic ovaries, 
Son et  al. [50]concluded that oocyte collection in IVM 
cycles should be performed when the dominant follicle is 
14 mm in a diameter or less as sibling immature oocytes 
may be affected adversely if a dominant follicle > 14 mm 
is present at the time of oocyte retrieval.

Researchers have also suggested that extending the 
period of hCG priming time from 35 to 38 h for imma-
ture oocyte retrieval promotes oocyte maturation in vivo 
and increases the IVM rate of immature oocytes [59].

Clearly, further evidence from well-designed RCTs 
is needed to confirm the benefits of priming with gonad-
otropins on small follicles in IVM cycles, and the optimal 
dose and timing. As IVM programs are limited to a few 
specialized centers around the world, an international 
registry would facilitate data sharing and would encour-
age best practice.

Oocyte retrieval
Unlike in standard IVF collections, oocyte retrieval in 
IVM cycles can be more challenging, due to smaller fol-
licle sizes and stronger attachment of immature COCs to 
the follicle wall, especially without an ovulatory dose of 
hCG or GnRH agonist. Emphasizing the importance of 
correctly timed ovulating hCG injections in IVF cycles is 
vital, as retrieval may fail even from larger follicles with-
out them. Several published articles have demonstrated 
that cycles with a higher number of immature oocytes 
retrieved tend to yield better clinical outcomes [60]. 
Hence, achieving a satisfactory oocyte recovery rate is 
crucial for the success ofIVM programs.

In the majority of IVF centers, the standard needle 
diameter for puncturing small follicles, which can range 
from 2 to 12 mm in size, is typically between 16 and 21 
gauge. However, some clinics employ a two-needle sys-
tem for follicle aspiration in IVM cycles. The reported 
aspiration pressure varies from 80 to 120 mmHg [2].
Using a thin needle for multiple punctures on small fol-
licles, along with lower aspiration pressure,  may occa-
sionally result in needle blockage during the procedure 
[34]. To prevent the formation of blood clots inside the 
aspiration needle, regular flushing with flushing media 
or adding 2 U/mL of heparin is necessary.  This precau-
tion helps maintain the patency of the needle and ensures 
smooth aspiration without interruptions caused by clot 
formation.

A retrospective cohort study comparing complication 
rates and pain scores after oocyte retrieval in IVM and 
IVF cycles concluded that although IVM oocyte retriev-
als require more punctures per ovary and took signifi-
cantly more time than IVF oocyte collections, they were 
not associated with a higher complication rate than IVF 
oocyte retrieval procedures [61].

When directly aspirating immature oocytes from 
ex vivo ovarian tissues or ovaries during a caesarean sec-
tion (CS), a simple technique is commonly used. The tis-
sues or ovaries are held with one hand, while a 5 to 20 mL 
syringe filled with buffered IVF media containing pro-
teins is used with a 21- or 22-gauge needle for the aspira-
tion process [62, 63]. This technique allows for efficient 
retrieval of small follicles containing immature oocytes.

The identification of oocytes from follicular aspirates 
in IVM cycles can be approached using two methods: 
the direct method and the filter method [34]. In the 
direct identification method, the follicular aspirate is 
transferred to a Petri dish and examined under a ster-
eomicroscope to detect COCs, similar to the process in 
conventional IVF cycles. This approach is employed in 
both hCG-primed cycles, with or without priming with 
FSH, as many of the retrieved oocytes have expanded 
CCs [34](Fig. 1B).

However, since identifying immature oocytes lacking 
an expanded cumulus mass in non-hCG primed IVM 
cycles can be more challenging than in IVF cycles, the fil-
ter method is commonly used in many IVF laboratories. 
The filter method involves using a cell strainer device 
with 70-μm pores, usually composed of a nylon mesh 
(such as Falcon® 70 μm mesh size from BD Biosciences) 
[34]. In this method, the follicular aspirates collected in 
tubes are passed through the cell strainer, which helps 
separate the oocytes from other components. Once the 
aspiration is complete, the collected aspirates on the 
device are rinsed with fresh buffered medium to elimi-
nate red blood cells and small cells. The oocytes, along 
with other components like granulosa cells, are then 
transferred to a new Petri dish for examination under 
a stereomicroscope to identify and isolate the COCs. 
While the filter method is efficient and straightforward, 
it may lead to a delay in communication between the 
clinician and embryologist regarding the quantity and 
morphology of the retrieved oocytes during the process. 
Clinicians often want to know the number of oocytes 
obtained during the egg retrieval procedure to assess the 
progress of the aspiration process.

IVM of immature oocytes, culture medium for IVM 
and supplements
As mentioned earlier, the spontaneous maturation 
of immature oocytes in  vitro can lead to incomplete 
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cytoplasm maturation, potentially impacting the devel-
opmental competence of the oocytes and resulting 
embryos. To address this issue and improve the overall 
success of IVM programs, some studies have explored a 
biphasic IVM approach, which involves two phases: pre-
IVM and IVM. In the pre-IVM phase, chemicals such as 
cAMP analogues, kinase inhibitors, or PDE inhibitors are 
used to delay or temporarily prevent spontaneous oocyte 
maturation for a short period (usually around 2 h) [64]. 
However, the effect of using these chemicals in humans 
has not yielded significant improvements in outcomes.

Recently, a novel biphasic IVM method has been 
reported, which aims to mimic the in  vivo system. In 
this method, CNP is utilized to maintain GV arrest for 
24 h in the pre-IVM phase. As mentioned earlier, CNP 
regulates cGMP levels in granulosa cells inside the folli-
cle. COCs treated with CNP sustain gap-junctional com-
munication between the oocyte and CCs for a longer 
duration, supplying the cGMP produced to the oocytes, 
even in in  vitro conditions [65]. This innovative bipha-
sic IVM system has been termed ’CAPA-IVM’ [66], and 
studies have reported highly promising outcomes [67]. It 
is worth noting that this culture system requires an extra 
day of culture and has only recently been introduced into 
clinical practice in an IVM laboratory. Consequently, its 
efficiency still needs to be confirmed by other IVF cent-
ers to validate its potential benefits and success rates.

Indeed, the majority of clinics perform IVM without 
utilizing the pre-IVM phase, and there is no consensus 
on the most suitable medium formulation for IVM [66, 
67]. Although basic human IVM culture media are com-
mercially available, the developmental competency of 
immature oocytes was not significantly different when 
using complex culture medium or regular IVF media 
such as blastocyst media which has a high concentration 
of glucose [68, 69].

Currently, many IVM protocols involve adding serum, 
FSH, LH/hCG, or EGF-like growth factors to the culture 
medium based on their role in oocyte maturation in vivo. 
To avoid potential risk ofinfection from serum sources, 
alternatives like the patient’s own serum, human serum 
albumin, or synthetic substitutes have been used for pro-
tein supplementation in IVM [70].

FSH is commonly included in the culture media dur-
ing IVM to support oocyte maturation. In  vivo, FSH is 
crucial for the development of preovulatory follicles, the 
induction of LH receptors, and the stimulation of EGF-
like growth factors [71, 72]. Similarly, LH and hCG are 
essential in IVM media to mimic the natural process of 
meiotic resumption and final maturation after LH surge 
and ovulation in  vivo [73–75]. However, it is essential 
to note that the role of gonadotropins in  vitro may dif-
fer from in vivo due to the absence of mural cells, which 

mediate LH/hCG signals and EGF-like growth factors, 
in immature COCs collected in  vitro. Therefore, one 
study suggested using high FSH levels (70 IU/L) in IVM 
to stimulate the somatic cells of COCs, which have rela-
tively low levels of FSHR expression, to sufficiently secure 
LHR expression, thereby enabling oocytes to resume 
meiosis [76].

Recent IVF research has explored the addition of EGF-
like growth factors (AREG or/and epiregulin) [77], mid-
kine [78], oocyte-secreted factors (GDF-9, pro-GDF9, 
BMP-15, or pro-BMP15) [79, 80], cumulin [81], or anti-
oxidants (melatonin or coenzyme Q10) [82–84] to IVM 
media, resulting in improved maturation and embryo 
development. Cadenas et  al. [76] confirmed significant 
up-regulation of substances such as amphiregulin, inhi-
bin-A, inhibin-B, and midkine in human follicular fluid 
(FF) and granulosa cells (GCs) during the final matura-
tion of follicles in vivo.

However, further extensive research is necessary to 
determine the optimal combination and concentrations 
of these supplements in the culture medium to achieve 
enhanced IVM outcomes.

IVM culture time and Insemination
A critical aspect of the hCG-primed IVM cycles is the 
identification of in vivo mature oocytes on the day of col-
lection, attributed to their significant reproductive poten-
tial (Fig.  2). Consequently, in hCG-primed cycles, it is 
crucial to assess oocyte maturity multiple times, encom-
passing both the collection day and the subsequent day. 
This is in contrast to other non-hCG primed IVM pro-
grams, where in vivo matured oocytes are not present on 
the collection day.

In the early IVM studies, oocyte maturity was typi-
cally assessed after 48 or 56 h of culture [1, 85, 86]. 
However, recent researchers have shown that a sig-
nificant number of MII stage oocytes (approximately 
40–60%) can be obtained after just one day of culture 
(approximately 24–30 h) from GV stage oocytes col-
lected in IVM cycles [34].

Historically, intracytoplasmic sperm injection (ICSI) 
has been the preferred method of insemination in IVM 
studies [60, 87]. While IVF fertilization methods can be 
used in IVM [88, 89], ICSI is commonly used to increase 
fertilization rates, regardless of the presence of a male 
factor, and to mitigate the risk of unexpected fertilization 
failure.

Culture of IVM embryos, Embryo Transfer (ET) 
and cryopreservation
After zygotes (fertilized oocytes) are generated through 
IVF fertilization or ICSI within an IVM cycle, the sub-
sequent embryological tasks and procedures for ET and 
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cryopreservation closely resemble those employed in tra-
ditional IVF cycles [34].

Although the cleavage rate of IVM embryos parallels 
that of IVF embryos, the blastocyst rate of IVM embryos 
is generally somewhat lower than that observed in IVF 
embryos [90, 91]. Consequently, numerous IVF centers 
initially leaned toward cleavage stage ET in IVM cycles 
to avert potential risks linked to difficulties in blastocyst 
development. Nevertheless, certain centers have endeav-
oured to enhance clinical outcomes by cultivating and 
transferring IVM embryos at the blastocyst stage, result-
ing in improved success rates [7, 91].

In terms of cryopreservation, investigations have 
revealed favourable survival rates and reasonable clini-
cal outcomes when employing vitrification to freeze both 
cleavage-stage and blastocyst-stage embryos derived 
from clinical IVM programs [92–94].

Endometrial preparation and luteal support
In IVM cycles, adequate endogenous estrogen from the 
dominant follicle to prepare the endometrial lining is 
deficient and oocytes are retrieved before the endome-
trium is fully estrogenised.  The progesterone support 
from the corpus luteum is insufficient and can compro-
mise endometrial receptivity. This asynchronous devel-
opment between the embryo and the endometrium may 
explain the poor implantation rates in fresh transfer IVM 
cycles [95].

The endometrial preparation protocol proposed by 
Trounson et al. [85] included low dose exogenous estra-
diol starting after oocyte retrieval followed by pro-
gesterone suppositories after the embryo transfer. In 
a retrospective study,  Elizur et  al. [96] compared low-
dose hMG to micronized estrogen (6 to 12 mg/day) to 
thicken the endometrial lining in IVM cycles when the 
endometrial thickness was below 6 mm on day 6–10. 
They observed that both hMG and micronized estrogen 
treatmentsignificantly improved endometrial thickness 
but hMG  treatment was associated with higher num-
bers of in-vivo matured oocytes found at oocyte retrieval 
and higher maturation rates at 24 h. Although higher 
implantation and clinical pregnancy rates were observed 
in the hMG group, the difference was not statistically 
significant.

Russell et al. [96] reported improved oocyte maturation 
rates and embryo development when exogenous estrogen 
priming was initiated in the mid-follicular phase versus 
when estrogen was initiated early in the follicular phase. 
In order to mimic the natural estrogen rise from the 
dominant follicle, other authors have described  begin-
ning estrogen supplementation either on the day of 
oocyte retrieval or just before collection [97]. Progester-
one supplementation is usually commenced on the day 

of oocyte collection to correspond to the rise of proges-
terone following the LH surge in natural cycles. Further 
studies are required to assess the optimal regimen to syn-
chronize the window of implantation with embryo devel-
opment in IVM cycles.

Freeze all strategy
In the majority of IVM treatment cycles, IVM of imma-
ture oocytes is usually followed by a fresh ET. Several 
studies have shown no significant difference in clinical 
outcomes between fresh and frozen ETs in hCG-primed 
cycles, whether performed at the cleavage or blastocyst 
stage [92, 93]. Walls [94] also reported favourable clini-
cal outcomes after transferring fresh blastocysts gener-
ated from FSH-primed IVM cycles, using an estradiol 
supplementation regime starting two days before oocyte 
retrieval.

However, it has been suggested that the endometrial 
steroid expression in non-hCG IVM cycles is abnormal, 
and the mid-luteal histological signature of endometrial 
receptivity is deficient, possibly due to the short follicular 
phase of IVM cycles [98]. A freeze-all approach at cleav-
age stages has therefore been recommended by some 
authors.

In a retrospective case series of 79 consecutive PCOS 
patients undergoing IVM followed by vitrified-warmed 
ET at cleavage stage over a 2-year period, the cumulative 
live birth rate (LBR) per embryo transfer was 16.2%, the 
cumulative LBR per patient was 21.8% and the LBR per 
retrieved immature oocyte was 1.1% [99].

In a recent randomized controlled pilot study, 40 
women aged 18–37 years with a high antral follicle count 
undergoing one cycle of CAPA-IVM were randomized 
to a freeze-only strategy with subsequent frozen embryo 
transfer or to fresh embryo transfer at the cleavage stage. 
The authors reported that the ongoing pregnancy rate 
in the freeze-only group was significantly higher than 
that in the fresh embryo transfer group as was the live 
birth rate [100]. However, more research is needed into 
whether a freeze-only approach in CAPA-IVM cycles fol-
lowed by a frozen embryo transfer may be a more effec-
tive and safer option in patients undergoing IVM.

Applications of IVM in clinical practice
IVM for PCOS patients
IVM of oocytes has been proposed as a safer alternative 
to conventional ovarian stimulation (COS) in patients 
with PCOS as the risk of ovarian hyperstimulation syn-
drome (OHSS) is minimal. In a study comparing IVM 
versus IVF with the GnRH antagonist protocol for 
women with PCOS, Das et al. [8] reported that the num-
ber of mature oocytes, fertilization rates and number of 
embryos cleaved were similar. There was no significant 
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difference in the clinical pregnancy rates per embryo 
transfer (IVF: 45.8% versus IVM: 32.4%), but the live-
birth rate was higher in the IVF group (IVF: 40.7% versus 
IVM: 23.5%;  P = 0.04). Five women developed moder-
ate or severe OHSS in the IVF group, whereas none did 
in the IVM group. The authors concluded both IVM 
and IVF with the GnRH-antagonist protocol seemed to 
be effective treatment regimens in women with PCOS, 
although IVM is associated with a lower risk of OHSS.

A non-inferiority randomized controlled trial com-
paring IVM versus standard IVF in women with PCOS, 
found that one cycle of IVM without gonadotropins, 
resulted in lower 6-month cumulative live birth rates, 
when undergoing single vitrified-warmed blastocyst 
transfer. In the IVM group, there were no cases of OHSS, 
while in the IVF group, ten women (5.7%) had moderate 
OHSS, and one woman (0.6%) had severe OHSS [101].

A recent systematic review of prospective studies com-
paring IVM and conventional ovarian stimulation (COS) 
in patients with PCOS, found that the live birth rate was 
not significantly lower after IVM vs. COS (odds ratio 
[95% confidence interval] of 0.56 [0.32–1.01] overall, 0.83 
[0.63–1.10] for human chorionic gonadotropin (hCG)-
triggered IVM [hCG-IVM] and 0.45 [0.18–1.13] for non-
hCG-triggered IVM [non-hCG-IVM]), irrespective of the 
stage of transferred embryos [102].

In recent years, strategies such as GnRH agonist trig-
gering in combination with a policy of freeze-all embryos 
have been developed to reduce the risk of OHSS risk 
[103]. As a result, the popularity of IVM of oocytes to 
treat subfertile women with PCOS has declined. How-
ever, a recent study found that in women with increased 
risk of OHSS, women were willing to trade off cancella-
tion rate, number of injections, chance of pregnancy and 
costs for lower risk of OHSS [104]. This suggests that 
IVM may be a suitable alternative in selected patients 
with PCOS after appropriate counselling.

IVM for fertility preservation
Time to cancer treatment is a critical concern for many 
cancer patients, as they often cannot afford to delay start-
ing chemotherapy, radiation therapy, or surgery. In such 
urgent situations, IVM treatment offers a valuable advan-
tage over conventional IVF. IVM can be initiated imme-
diately and at any phase of the menstrual cycle without 
the need for hormonal stimulation. This allows cancer 
patients to preserve their fertility without having to delay 
cancer treatment, as the IVM treatment cycle can be 
completed within a short-time frame of 2–10  days [37, 
105–108]. Since IVM oocyte cryopreservation can be 
undertaken without any need for gonadotropin stimula-
tion, potential side effects such as OHSS can be avoided.

IVM is also a viable option in patients who have abso-
lute contraindications to gonadotropin stimulation. 
Moreover, ovarian stimulation is not an option in prepu-
bertal girls [10].

Grynberg et  al. [109] observed that in breast cancer 
patients undergoing urgent fertility preservation, there 
were no differences in the number of COCs recovered or 
their IVM rates whatever the phase of the cycle at which 
oocytes were collected.

In support of these findings, Creux et  al. [107] evalu-
ated the efficacy of IVM when immature oocyte retrieval 
was performed in the early follicular, late follicular, or 
luteal phases in cancer patients undergoing urgent fer-
tility preservation. There was no significant difference in 
the number of oocytes retrieved, maturation rates after 
48  h of culture, fertilization rates, or the total number 
of oocytes and embryos cryopreserved when immature 
oocyte retrieval was performed at various times in the 
menstrual cycle.

It has been proposed that an antral follicle count of > 20 
follicles and serum AMH values of 3.7 ng/ml are required 
for obtaining at least 10 IVM oocytes for cryopreserva-
tion in cancer patients seeking fertility preservation [110]. 
A second IVM retrieval 10 days after the first one may be 
considered if time permits. In 17 women with breast can-
cer who underwent 2 cycles of IVM followed by oocyte 
vitrification, no difference was observed between the first 
and second IVM outcomes, and the number of cryopre-
served oocytes were comparable [111].

IVM techniques can also be combined with ovar-
ian tissue cryobanking for urgent fertility preserva-
tion. Retrieval of immature oocytes from antral follicles 
extracted from excised ovarian tissue, can be combined 
with IVM of oocytes followed by cryopreservation of 
either mature oocytes or embryos [112]. Segers et  al. 
[113] recently reported three live births after ovar-
ian tissue oocyte IVM, intra-cytoplasmic sperm injec-
tion (ICSI) and embryo transfer among patients who 
underwent unilateral oophorectomy for ovarian tissue 
cryopreservation.

In the future, it is likely that the application of IVM 
procedures will expand to include conditions such as 
thalassemia, sickle cell anaemia and Turner syndrome 
[76]. In a recent study, it was observed that the biphasic 
in  vitro maturation system (CAPA-IVM) improved the 
developmental competence of ovarian tissue oocytes 
from patients with gynaecological tumours in compari-
son to the standard IVM method [114].

Several studies have indicated that vitrified-warmed 
IVM oocytes exhibit reduced survival rates and less 
favourable embryological as well as clinical outcomes 
compared with fresh IVM oocytes [108, 115]. To 
enhance the viability and developmental potential of 



Page 10 of 16Das and Son  Reproductive Biology and Endocrinology          (2023) 21:110 

cryopreserved oocytes obtained through IVM cycles, 
additional research is warranted. This pursuit of 
improved survival and embryo development holds the 
potential to broaden the scope of IVM techniques for the 
purpose of fertility preservation.

IVM for resistant ovary syndrome and oocyte maturation 
disorders
Resistant ovary syndrome, which is also known as ovar-
ian insensitivity syndromeor Savage syndrome, is a rare 
endocrine disorder characterized by elevated endogenous 
gonadotropin levels and low estrogen levels, primary or 
secondary amenorrhoea, normal secondary sexual char-
acteristics, normal AMH and antral follicle counts, and a 
normal female karyotype. Mutations in the FSH receptor 
or beta subunit, deficiency of follicle-stimulating growth 
factors, abnormal gonadotropin signalling, and autoim-
mune abnormalities have all been described as probable 
causes of this disorder [116, 117]. The antral follicles are 
unresponsive to endogenous and exogenous FSH, and 
patients may therefore suffer from repeated IVF failure.

For patients with resistant ovary syndrome, IVM is 
currently the only viable  alternative to egg donation 
[118]. Several live births have been reported following 
IVM cycles in patients with this condition [5, 118, 119]. 
Galvao et  al. [5]  observed an overall maturation rate of 
27.5% after non-hCG triggered IVM and a maturation 
rate of 44.4% in hCG-triggered IVM cycles in patients 
with resistant ovary syndrome, with an overall matura-
tion rate of 29.7%. They reported a live birth rate of 16.7% 
per cycle started and 33% per patient. IVM of oocytes is 
therefore a feasible option in patients with resistant ovary 
syndrome.

However, in patients with deficient oocyte matura-
tion disorders, researchers have reported disappointing 
results after IVM treatment, even with extended oocyte 
culture [5, 120].

Natural cycle IVF/IVM
The concept of natural cycle IVF combined with IVM 
has been proposed, which combines a natural cycle IVF 
with immature oocyte retrieval and IVM.  It has been 
suggested that this increases the number of embryos 
available for transfer, thereby increasing the possibil-
ity of a pregnancy.  In a bovine model, the maturational 
and developmental competence of immature oocytes 
obtained from small antral follicles was not affected by 
the presence of a dominant follicle or the phase of fol-
liculogenesis [121]. Son et  al. [122] reported the results 
from natural cycle IVF/IVM cycles using an hCG trigger 
of 10,000 IU, when the diameter of the dominant folli-
cle was over 12 mm. They reported a clinical pregnancy 
and implantation rate of 20.8% and 6.7% respectively. 

However, they concluded that although immature 
oocytes from natural cycle IVF can fertilize normally, the 
embryos derived from the immature oocytes in natural 
cycles IVF have a poorer reproductive potential, which 
suggests that embryos derived from sibling immature 
oocytes have little effect on the clinical outcome.

Similarly, a recent study on natural cycle IVF/IVM 
concluded that a significant portion of the COCs from 
subordinate follicles have the capacity to develop into 
normal embryos. The outcome was not influenced by the 
retrievalof a dominant follicle (12–14 mm diameter) and 
the developmental and implantation potential of imma-
ture oocytes retrieved from the smaller follicles were not 
affected [123].

In a retrospective cohort study of 1,072 patients, Tera-
moto et al. [124] compared the efficacy and safety of blas-
tocyst transfers derived from small follicles (≤ 10 mm) 
and large follicles (> 11 mm). They  observed that the 
incidence of abnormal karyotypes and major congenital 
anomalies in neonates did not differ between small and 
large follicle derived pregnancies.

IVM for poor responders
The optimum management of women who respond 
poorly to conventional ovarian stimulation remains a 
challenge. There is a paucity of data on the use of IVM 
protocols for poor responders. A few researchers have 
analyzed whether embryo transfers with rescue IVM 
derived embryos could improve clinical outcomes in 
poor-responder patients undergoing ovarian stimula-
tion. In a case report, Liu et  al. [125] reported three 
pregnancies (two live births and an ongoing pregnancy) 
in 8 poor responder patients who underwent in  vitro 
maturation of immature oocytes derived from stimulated 
IVF cycles before cycle cancellation. In another study 
which included 440 poor responder patients, under-
going ICSI cycles in which fewer than five MII oocytes 
and at least one immature oocyte was retrieved, patients 
were divided into two groups based on the injected 
oocytes’ nuclear maturation status. The group where 
only embryos derived from mature oocytes were injected 
were compared with cycles in which least one immature 
oocyte remained in culture for spontaneous maturation 
and ICSI. Although the rescue IVM group had a higher 
number of transferred embryos and a lower embryo 
transfer cancellation rate, there were no significant dif-
ferences in the clinical pregnancy rate (16.7% vs. 16.5%) 
or miscarriage rate between the two groups, suggesting 
that rescue IVM did not provide any additional benefit in 
poor responder cycles [126].

Some researchers have suggested that natural 
cycle IVF/IVM may achieve better outcomes in poor 
responder patients after failure of stimulated cycles [127]. 
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In a case report, the authors described three pregnan-
cies in poor responders by combining natural cycle IVF 
with IVM of immature oocytes and suggested that natu-
ral cycle IVF/IVM could be a viable alternative for poor 
responder women when conventional ovarian stimula-
tion cycles have been unsuccessful.  They argued that as 
more oocytes are retrieved in natural cycle IVF/IVM 
cycles compared with natural cycle IVF, this technique 
could maximise treatment efficacy.

Clearly more research is needed on the optimum IVM 
treatment protocols and culture methods to improve 
clinical outcomes in poor responder patients.

Long term safety of IVM
Obstetric and perinatal outcomes, including Apgar 
scores, growth restriction, preterm delivery, neonatal 
complications,and pregnancy complications such as ges-
tational diabetes and antepartum haemorrhage, are com-
parable in pregnancies conceived after IVF or IVM. [66, 
128]. Moreover, data do not suggest a higher incidence 
of congenital abnormalities following IVM procedures. 
Among 432 children born from 344 pregnancies after 
ART,  the observed odds ratios (ORs) for any congeni-
tal abnormality were 1.42 (95% confidence interval [CI] 
0.52–3.91) for IVM, 1.21 (95% CI 0.63–2.62) for IVF, and 
1.69 (95% CI 0.88–3.26) for ICSI [128]. Similarly, a study 
comparing 21 IVM children and 21 non-IVM children, 
did not report any major malformation in either group. 
The children born following IVM, did not show any 
developmental delay during infancy or childhood [129].

Very few live births have been reported following IVM 
oocyte cryopreservation. Cohen et  al. [115] reported 
five live births after vitrification and warming of oocytes 
matured in  vitro in women diagnosed with polycystic 
ovary syndrome. Mayeur et  al. [130] recently reported 
three live births in cancer patients who underwent fertil-
ity preservation using IVM, two of which were from fro-
zen oocytes and one following embryo cryopreservation.

Concerns have been raised regarding epigenetic abnor-
malities of oocytes or embryos generated using IVM 
techniques. It is reassuring that no significant imprinting 
gene disorders have been found in either IVM oocytes or 
chorionic villus or cord blood samples from newborn fol-
lowing IVM [131, 132].

Improving human IVM: key challenges
While IVM presents several advantages over conven-
tional IVF, it is important to recognize that IVM also 
comes with its challenges. Performing an IVM cycle 
demands more time and expertise compared to conven-
tional IVF cycles [34]. Additionally, the overall efficiency 
of IVM tends to be lower than that of IVF cycles.

In various non-human mammalian species, assisted 
reproductive techniques (ART) involve the acquisi-
tion of immature GV oocytes from small antral follicles. 
This procedure entails visually identifying antral follicles 
within the ovaries and subsequently retrieving them from 
outside the body. This process parallels the aspiration of 
immature oocytes from ex vivo ovarian tissue in humans. 
However, in standard human IVM programs, the proce-
dure for obtaining immature oocytes closely resembles 
that of standard IVF. As previously mentioned, this can 
present challenges for clinicians in terms of visualizing 
and aspirating immature oocytes during ultrasound-
guided retrieval.

Furthermore, various pre-treatment methods, such as 
FSH- or hCG-priming before oocyte retrieval, have been 
employed. As a result, the techniques employed in clini-
cal IVM can display considerable variability across differ-
ent clinics. These variations in protocols and approaches 
can impact the effectiveness and success rates of IVM 
cycles, hindering the establishment of a standardized 
procedure.

Addressing these challenges and refining the oocyte 
retrieval process within IVM cycles will play a pivotal 
role in enhancing the overall efficiency and success rates 
of IVM programs. By devising specialized techniques and 
protocols tailored to IVM oocyte retrieval, clinicians can 
enhance the outcomes of IVM programs.

For embryologists, handling an IVM cycle requires 
additional effort compared to conventional IVF due to 
the following reasons:

1) Identifying COCs in follicular aspirates at the time of 
collection takes more time since immature oocytes 
lack the typical expanded CCs observed in IVF cycles 
(Fig. 1A). Additionally, COCs have a similar colour to 
granulosa cells, making it more challenging to distin-
guish immature oocytes from other cell types in the 
follicular fluid.

2) As immature oocytes are retrieved from different 
stages of small antral follicles, the IVM of the oocytes 
is not synchronized. This lack of synchronization 
means that multiple rounds of maturation assess-
ment and ICSI may be necessary to obtain more 
mature oocytes and embryos. Achieving uniform 
maturation among the retrieved oocytes is crucial for 
successful IVM outcomes.

3) Another challenge in IVM cycles is the absence of 
standardized commercial media and consensus pro-
tocols for media preparation. As a result, each labo-
ratory must prepare its own culture medium, lead-
ing to variations in the composition of the medium 
between different laboratories. Therefore, ongoing 
research is necessary to identify critical factors that 
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influence the quantity and quality of oocyte matura-
tion. These factors encompass the composition of the 
culture medium, the timing and duration of culture, 
as well as the presence of supportive factors. Through 
the identification and optimization these elements, 
standardized and effective culture conditions for 
IVM can be established.

Advanced culture methodologies, exemplified by sys-
tems like the "CAPA-IVM" biphasic approach [66], 
Micro-Vibration culture [133], or the utilization of small 
droplet (25 μL) cultures [76], along with the supplemen-
tation of various factors aimed at mimicking the in vivo 
follicular microenvironment, have emerged as promis-
ing avenues for future research. Furthermore, a compre-
hensive consideration of the physical aspects of culture 
systems, such as 3-D culture systems,is of considerable 
importance [134, 135]. These strategies have the poten-
tial to offer invaluable insights for enhancing human IVM 
programs in the future.

4) Reproductive scientists face challenges in improving 
the IVM system using immature oocytes from regu-
lar IVM cycles due to the limited number of oocytes 
retrieved, hindering meaningful clinical testing, and 
the variability in follicle diameters leading to incon-
sistent results. Animal studies offer advantages for 
researching and enhancing IVM, as they provide 
an ample number of oocytes for research purposes 
and offer a more manageable research environment. 
Thus, the utilization of immature oocytes from alter-
native sources, such as the medullaor/and CS, for 
research purposes in IVM programs holds the poten-
tial to provide valuable insights.

Conclusions
In the field of assisted reproduction and fertility preser-
vation, IVM of human immature oocytes continues to 
be a relevant and valuable technique. IVM offers sev-
eral advantages and potential benefits, making it a valu-
able choice for specific individuals or clinical situations, 
such as those seeking fertility preservation, at risk of 
OHSS, or facing economic constraints in pursuing con-
ventional IVF treatment. Additionally, IVM’s contribu-
tions extend to the wider field of reproductive medicine. 
By studying oocyte maturation, valuable insights can be 
gained, potentially advancing infertility treatment, opti-
mizing embryo development, and ultimately leading to 
improved clinical outcomes. To fully unlock the potential 
of IVM and ensure its widespread utilization, collabora-
tive efforts among clinicians, scientists, embryologists, 
and industry professionals are essential. By working 

together, these experts can address the challenges, refine 
laboratory techniques, and develop standardized proto-
cols that enhance the efficiency and effectiveness of IVM 
programs. IVM can serve as a valuable alternative, par-
ticularly for individuals who cannot undergo COH. With 
enhanced efficiency, IVM is likely to become increasingly 
relevant and beneficial in routine clinical practice, pro-
viding more options for individuals seeking fertility treat-
ments and fertility preservation.
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