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Abstract
Background Artificial sweeteners, used as sugar substitutes have found their ways into almost all the food items 
due to the notion that they are non-caloric. Aspartame is used in numerous food products throughout the world. The 
primary users of aspartame include diabetics and calorie conscious people who intend to limit their calorie intake.

Methods Female Swiss albino mice were divided into three groups (12 mice each) for the duration of 30 and 60 
days consecutively. The treatment groups received 40 mg/kg b. w. aspartame orally. Hormone assays using ELISA and 
tissue histopathology have been performed along with the fertility assay to access the treatment outcomeon the 
fertility of treated mice in comparison to controls.

Results Present study reports that female mice treated with aspartame for 30 and 60 days showed significant 
reduction in body weight, relative organ weight of (liver and kidney) and gonadosomatic index. These changes 
were more significantly recorded in 60 days treatment group. Aspartame treated animals for 30 and 60 days showed 
duration-dependent decrease gonandotropins (follicle stimulating hormone and luteinizing hormone), and 
steroids (estradiol and progesterone). Moreover, severe histopathological changes, reduction in number of growing 
follicles, degenerative changes in follicular structure, corona radiata and zonagranulosa were also observed. Besides, 
histomorphological changes were also observed in the uterine structure including atrophic uterine endometrial 
glands, contracted endometrial lining, disruption of the endometrial structure and the shapes of blood vessels were 
also altered.

Conclusion Non-nutritive artificial sweeteners including aspartame negatively impact the function of ovaries and 
feedback mechanism of reproductive hormones by affecting the hypothalamic–pituitary–gonadal axis. In light 
of present findings the aspartame negatively impacted the reproductive system of female mice. More studies are 
required to identify the molecular mechanism and the pathways involved.
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Background
Humans and other animals naturally like sweet tastes, 
which boosts eating satisfaction [1, 2]. Sugar is bad for 
teeth, waistline, and is associated with several degenera-
tive disorders. Sugar intake may affect behaviour, emo-
tions, health, and disease [3–5]. The number of people 
suffering from diabetes [6], obesity [7], hypertension [8], 
and heart disease [9] is increasing every year. Increased 
sugar in foods, desserts, and drinks has prompted health 
concerns. Added sugar intake has increased worldwide 
obesity [10]. The World Health Organization recom-
mends that added sugars should make up no more than 
10% of daily caloric intake for optimal health [11]. Like-
wise, American Heart Association (AHA) recommenda-
tion is 6 table spoon full (24  g, providing 100 calories) 
of sugar per day for women and 9 table spoon full (36 g, 
providing 150 calories) of sugar per day for men [12].

The popularity of sugar free foods is attributed to their 
low calorie content. A number of low calorie artificial 
sweeteners acesulfame K, aspartame, neotame, saccha-
rin, stevia, and sucralose [13, 14] having calorie value 
lower than sugar are produced throughout the world in 
a very large quantity. The admissible daily intake (ADI) 
for aspartame is 40  mg per kilogram body weight (for 
humans) as stated by FDA. However, this value has 
given birth to a number of controversies, wherein, many 
researchers have reported that not only the ADI but 
lesser quantities are not totally safe for consumption [15, 
16]. A number of health ailments like metabolic syn-
drome, increased weight gain and other negative health 
effects have been associated with sugar intake [17–20].
This has finally resulted into the promotion of ASs as a 
healthy alternative [13, 21]. Sugar substitute is an artifi-
cial non-nutritive sweetener which mimics the effect of 
sugar on taste [22]. Artificial sweeteners (ASs) are also 
known as non-nutritive or intense sweeteners because 
the sweetening potential of ASs is very high compared 
to common sugar. Aspartame containing foods provide a 
kind of dietary option which is considered helpful in con-
taining obesity or diabetes mellitus [23].

However, ASs has been associated with numerous 
adverse effects [24, 25]. Many studies have investi-
gated the impact of ASs exposure during pregnancy and 
early childhood but due to the obscure conclusions of 
the studies about the impact of the ASs during critical 
developmental periods adds to the controversy [26–28]. 
According to the American Dietetic Association ASs con-
sumption is safe in children and pregnant women within 
acceptable intake limits [13], however, the US Institute of 
Medicine states a paucity of evidence of ASs safety and 
suggests avoiding ASs use in childhood [29]. Food and 
beverage intake of non-nutritive sweeteners (NNSs) has 
increased worldwide over the last three decades. Con-
sumers’ preference of NNSs rather than sugar or other 

healthy sweeteners might be due to their ability to mini-
mize weight gain [30]. ASs are so abundant and wide-
spread in the food industry that a number of people even 
do not know that they are consuming them [31]. On the 
basis of some studies supporting the use of ASs, if their 
use for human consumption is deemed safe [32, 33], sig-
nificant evidences suggest that ASs may not be necessar-
ily healthy, do not mitigate weight gain and may not be 
good to improve circulating glucose levels [34].

Gut-brain axis plays a vital role in sensing of foods 
ingested by humans. Feedback circuits are initiated by 
this axis to modify gene expression and regulate glyce-
mia, satiety, and energy partitioning [35, 36]. Aspartame 
(ASP) is one of the most commonly used ASs and is used 
as sugar substitute in a number of food products includ-
ing, soft drinks, jams, chewing gum, canned fruit, can-
dies, cosmetic products, vitamins, and medications [37, 
38]. There are hundreds of millions of aspartame con-
sumers throughout the world. Children and women of 
child bearing age are the major users of ASP [39, 40]. The 
consequences of ASP intake in pregnant women have 
been minimally addressed. A few studies investigating 
the impact of ASP on the gestation in humans are avail-
able. Besides, a few studies, in which the effect of ASP on 
the weight and physiology of offspring have been studied, 
are also available [41, 42].

Materials and methods
Animal model and aspartame administration
The animals used in this study were maintained in the 
animal centre of the Department of Biosciences in 
accordance with the Institutional Animal Ethical Com-
mittee (IAEC) and Committee for Control and Supervi-
sion of Experiments on Animals(CCSEA), New Delhi, 
India, (No. 1885/GO/S/16/CPCSEA/IAEC//B.U./08 Dt. 
18/06/16). The female mice were housed in standard 
polypropylene mice cages (290 × 220 × 140 mm) contain-
ing rice husk as bedding material. The animal room was 
well ventilated and maintained under standard experi-
mental conditions (Temperature 22 ± 2ºC and 12 h light/
dark cycle) throughout the experimental period. All the 
animals were provided with standard pellet diet and 
water ad libitum. The animals were acclimatized to the 
standard laboratory conditions for one week prior to 
experimental use. Healthy female albino mice Parkes (P) 
strain (5 to 7 weeks old) of 20 ± 2 g body weight was used 
in this study. Twelve mice were kept in the each group 
among, six were used for fertility assay and six were sac-
rificed for serum and tissue analysis for each duration. 
The animals were purchased from the College of Veteri-
nary Sciences, Mahow, Indore, Madhya Pradesh, India. 
The animals were randomly assigned to each experimen-
tal group. Aspartame (C14H18N2O5, 99% pure CDH- Lab-
oratory Chemicals India) was purchased in powder form 
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and mixed in water to make it suitable for the oral inges-
tion. The control groups received distilled water by oral 
gavage and aspartame groups received 40  mg/kg b. w./
day aspartame (2 mg/ml/2000 ppm) dissolved in distilled 
water for 30 and 60 days, until the completion of the 
study. The dose and duration of aspartame (ASP) used in 
the present study were based upon the previous studies 
[42–44]. At the end of the experiment, six female mice 
from each group were used for analysis or relative organ 
weights (liver and kidney), GSI, hormonal analysis and 
histopathological examinations of ovaries and uteri and 
another six animals were used for fertility studies.

Fertility assessment
After the aspartame treatment for 30 and 60 days the 
females were housed with virgin untreated males in the 
ratio of 2:1. The males were removed after 24 h and the 
successful mating was confirmed by the presence of vagi-
nal plug. The females were observed for successful preg-
nancy, fertility rate, gestational length, litter size, litters 
weight [45].

Serum sampling and processing
At the end of 30 and 60 days aspartame administra-
tion, the female mice were sacrificed and blood samples 
were collected by cardiac puncture and centrifuged at 
3000  rpm for 10  min to obtain serum. The serum sam-
ples were further used for the analyses of luteinizing 
hormone(LH), estradiol (E2), progesterone(P4), and folli-
cle-stimulating hormone(FSH) levels.

Body weight, relative organs weight, and gonadosomatic 
indices (GSI)
The body weights of the experimental animals, control 
as well as treatment were recorded at the initial day i.e. 
zero days and at the end of the different durations of the 
experiment i.e. 30 and 60 days. The values were expressed 
in grams [46].

The body weight gain was calculated as:
Body weight gain = Final body weight-Initial body 

weight.
Whereas, relative organs weight (liver and kidney) was 

calculated as:
Relative organs weight = weight of organs (g) ÷ Final 

weight x 100.
GSI were calculated by the following formula [47].
GSI = Gonad (ovary) weight (mg) ÷ Body weight (g) x 

100.

Estimation of Follicle Stimulating Hormone (FSH), 
Luteinizing Hormone (LH), Progesterone (P4), and Estrogen 
(E2) in the serum of female mice
The levels of E2, P4, FSH and LH were detected using 
mouse specific enzyme-linked immunosorbent assay 

(ELISA Kits) (Calbiotech Inc CA United States), accord-
ing to the manufacturer’s recommended instructions.

Histopathology
Animals of the treatment as well as control groups were 
sacrificed at the end of the experiment i.e. 30 and 60 
days duration. Liver, kidneys, ovaries and uterus were 
dissected out immediately after the animals were sacri-
ficed, washed in cold 0.9% NaCl, cleared of any attached 
tissues and fats, and were blotted dry. Small sections of 
all the organs were placed into separate vials containing 
Bouin’s fixative. All the vials were labelled with name of 
the organ, date of fixation and group details. 5 µ thick 
paraffin embedded tissue sections were cut, and stained 
with Ehrlich’s Hematoxylin and Eosin [48]. The stained 
sections were observed under compound microscope at 
100X and 400X magnifications for any histopathologi-
cal changes. The microphotograps of the observed tissue 
sections were taken by using microphotography unit.

Statistical analysis
The observations and data were tested for statistical sig-
nificance using SPSS software. The values were expressed 
as mean standard deviation (Mean ± SD). One way 
ANOVA is performed to analyse the statistical differ-
ences among groups.

p < 0.05 is considered significant.

Results
Body weight
The animals were weighed initially and after different 
intervals i.e. 30 and 60 days of the aspartame experiment. 
The animals treated orally with ASP showed a significant 
(p ≤ 0.01) decrease in their body weight when compared 
to the respective controls. The decrease in body weight 
was significant (p ≤ 0.001) in duration dependent manner 
(Table 1).

Relative organs weight and gonadosomatic indices
After treatment of ASP for 30 and 60 days, the relative 
organ weights of liver and kidney were decreased signifi-
cantly (p ≤ 0.01) in ASP treated group when compared to 
control groups. Decrease in relative organ weights of liver 
and kidney was highly significant (p ≤ 0.001) in 60 days 
ASP treated group. There were no significant changes 
in relative organ weights in control groups. The ovarian 
weights reduced significantly (p ≤ 0.01) after the treat-
ment of ASP for 30 and 60 and days, as compared to con-
trol groups. The reduction in ovarian and uterus weight 
was significant (p ≤ 0.001) in 60 days of ASP treated group 
(Table 1).
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Hormone analysis
Animals treated with aspartame for 30 and 60 days 
showed a significant (p < 0.01) decrease in FSH and 
LH hormonal levels as compared to control group. The 
decrease was significant (p < 0.001) in 60 days treated 
group. In addition, estradiol (E2) and progesterone (P4) 
levels also showed a significant (p < 0.01) decrease in 30 
and 60 days of ASP treated groups when compared to 
control groups (Fig. 1).

Follicle count and fertility parameter
Females treated with ASP showed significant (p ≤ 0.05) 
duration-dependent decrease in follicle count compared 
to control including primordial and growing follicles. 
Besides, animals treated with ASP showed duration 
dependent decrease in litter size, body weight of pups 
postnatal viability, weaning index and fertility index com-
pared to control group. However, no significant differ-
ence was observed in gestation period in 30 and 60 days 
ASP treated groups compared to control (Tables 2 and 3).

Histopathological and histomorphological analysis
The ovary female mice of the control group showed 
normal histoarchitecture including normal follicles, dif-
ferent sizes and stages of developing oocyte, zona gran-
ulose and thecal layers of follicle and corpus luteum 
(Figs.  2a and 3a). However, the female mice exposed 
with ASP for 30 (Figs.  2b and 3b) and 60 days (Figs.  2c 
and 3c) showed histopathological changes in the ovar-
ian structure characterized by decreased number of 
growing follicles, degenerative changes were observed in 
follicular structure i.e. degenerating oocytes, theca lay-
ers, corona radiata and zonagranulosa. The connective 

tissue of medullary region also showed some degenera-
tive changes and vacuolization. .

Female mice of control group presented a normal 
uterus histoarchitecture with normal endometrium, 
endometrial glands, myometrium, intact perimetrium 
and simple columnar epithelium (Figs. 2d and 3d). Ani-
mals treated with aspartame for 30 days (Figs. 2e and 3e) 
and 60 days (Figs. 2f and 3f ) presented histomorphologi-
cal changes in the uterine structure including atrophic 
uterine endometrial glands, squeezed endometrial lining, 
disruption of the endometrium and the shapes of blood 
vessels were also altered.

Discussion
The extensive use of artificial sweeteners particularly 
aspartame and its associated negative effects have been 
investigated by many researchers. However, reproductive 
toxicity of aspartame has been minimally addressed.

The results of the present study showed that ASP 
administration induced duration dependent decrease in 
body weight. The reduction in body weight was signifi-
cant (p < 0.001) in 60 days treatment group as compared 
to the control. The reduction in body weight may be due 
to reduced food and water intake which may have been 
caused by ASP consumption. These observations are sup-
ported by some researchers [49, 50] who reported that 
ASP intake induces satiety, decreases food intake and 
bodyweight. ASP administration increases circulating 
blood levels of phenylalanine which is reported to sup-
press food intake in humans and animals and increases 
cholecystokinin secretion which delays the gastric emp-
tying [50–53]. ASP was also reported to reduce body 
weight and fat mass in overweight subjects [50, 54–56]. 

Table 1 Body weight (g), relative organ weight (g/100 g b. w.), and GSI (mg/100 g b. w.) of control and aspartame (ASP) treated female 
mice after 30 and 60 days
Groups Initial body weight Final body weight Percent weight gain
Control 20.00 ± 2.00 25.50 ± 1.05 27.5%

ASP-30 20.33 ± 2.06 19.83 ± 1.17** -2.46%

ASP-60 20.17 ± 2.79 21.33 ± 1.21** 5.75%

Relative organ weight (g/100 g b. w.) Duration
(days of treatment)

Groups
Control ASP

Liver 30 4.77 ± 0.12 3.76 ± 0.28**

60 4.95 ± 0.69 3.12 ± 0.04**

Kidney 30 0.59 ± 0.03 0.39 ± 0.04**

60 0.60 ± 0.03 0.36 ± 0.05**

Gonadosomatic indices (GSI) Duration
(days of treatment)

Groups
Control ASP

30 39.3 ± 3.22 26.69 ± 2.86**

60 48.33 ± 5.66 26.35 ± 4.93**

± SD of six animals

*Significant difference (p ≤ 0.05) compared to control by one way ANOVA

**More significant difference (p ≤ 0.01) compared to control by one way ANOVA

***Highly significant difference (p ≤ 0.001) compared to control by one way ANOVA
NS Non significant compared to control by one way ANOVA
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Table 2 Follicular count (Ovarian reserves) of Control and 
Aspartame treated mice after 30 and 60 days
Follicle Count Groups Duration

30 days 60 days
Primordial follicles Control 15.8 ± 2.59 16 ± 2.24

ASP 11.8 ± 1.92* 8.4 ± 1.14**

Primary follicles Control 4 ± 1.58 4.4 ± 1.14

ASP 2 ± 1.0* 1.4 ± 0.55**

Secondary follicles Control 5.2 ± 1.79 5.4 ± 1.82

ASP 2.4 ± 1.14** 1.8 ± 0.84**

Graffian follicles Control 1.8 ± 0.84 2.2 ± 0.84

ASP 0.6 ± 0.55* 0.4 ± 0.55**

Atretic follicles Control 1.4 ± 0.55 1.6 ± 0.55

ASP 5.2 ± 1.48* 9.4 ± 2.7**

± SD of six animals

*Significant difference (p ≤ 0.05) compared to control by one way ANOVA

**More significant difference (p ≤ 0.01) compared to control by one way ANOVA

***Highly significant difference (p ≤ 0.001) compared to control by one way 
ANOVA
NS Non significant compared to control by one way ANOVA

Table 3 Reproductive indices of Control and Aspartame (ASP) 
treated female mice after 30 and 60 days
Parameters Group Duration (days)

30 days 60 days
Fertility index (FI) Control 100% 100%

ASP 80% 60%

Gestation period Control 20.6 ± 1.14 20.8 ± 0.84

ASP 19.2 ± 0.84 NS 19.4 ± 0.55 NS

Litter size Control 7.4 ± 0.55 7.6 ± 0.55

ASP 5.8 ± 0.45* 5.4 ± 0.89**

Litter weight (g) Control 1.55 ± 0.09 1.57 ± 0.08

ASP 1.40 ± 0.04* 1.34 ± 0.07**

Postnatal viability index Control 100% 100%

ASP 96.55% 96.29%

Weaning index Control 97.29% 100%

ASP 93.10% 92.59%
± SD of six animals

*Significant difference (p ≤ 0.05) compared to control by one way ANOVA

**More significant difference (p ≤ 0.01) compared to control by one way ANOVA

***Highly significant difference (p ≤ 0.001) compared to control by one way 
ANOVA
NS Non significant compared to control by one way ANOVA

Fig. 1 (A). Follicle stimulating hormone (FSH) level (mIU/mL) of Aspartame (ASP) after 30 and 60 days compared to Control. (B). Luteinizing Hormone 
(LH) level (mIU/mL) of Aspartame (ASP) treated female mice after 30 and 60 days compared to Control. (C). Progesterone (P4) level (ng/mL) of Aspartame 
(ASP) treated female mice after 30 and 60 days compared to Control. (D). Estrogen (E2) level (pg/mL) of Aspartame (ASP) treated female mice after 30 and 
60 days compared to Control
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Some researchers believe that decreased body weight in 
ASP treated animals is a result of diminution of Neuro-
peptide Y (NPY) in its principal hypothalamic site of syn-
thesis [57]. Neuropeptide Y (NPY) inhibits lipolysis and 
stimulates de novo lipogenesis and thus promotes weight 
gain and fat deposition [58–61].

The relative organ weight and GSI of animals treated 
with ASP significantly (p < 0.01) decreased after 30 and 

60 days of ASP administration. The observed decrease in 
relative organ weight and GSI were significant (p < 0.01) 
in 60 days ASP treated group as compared to the control 
group. The measurement of relative organ weight and 
GSI is an important indicator to study the organ toxicity 
due to the exposure of any toxic chemical. The duration-
dependent decrease in relative organ weight and GSI 
suggest abnormalities and atrophy in these organs. The 

Fig. 2 (a) Section of ovary of control mice showing normal growing follicles (F) of different sizes and stages. (b) Section of ovary of mice treated with 
ASP for 30 days showing decreased number of growing follicles. Degenerative changes were observed in follicular structure like degenerating oocytes 
(DO), theca follicli (arrow), corona radiata (arrow head) and Zona granulosa (ZG). (c) Aspartame treated ovary for 60 days shows degeneration of follicular 
antrum (FA), corona radiate (red arrow), oocyte (O), zona granulose (ZG) and theca follicle (arrow head). The number of follicles is very less. (d) of control 
uterus showing perimetrium (P), myommetrium (M), and endometrium (E). (e) Section of uterus of mice treated with ASP for 30 days shows compressed 
endometrial cells (arrow heads) and the glands (arrows) are also atrophic, attributed to endometrium destruction due to ASP. (f) Uterus treated with ASP 
for 60 days shows degeneration in uterine endometrial lining (arrow head). Endometrial glands were also affected as their number was decreased and 
their epithelial lining showed necrosis (arrows) (H & E × 100)
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results observed suggest that ASP may have toxic effects 
on liver, kidney and ovary which may have been caused 
by the methanol intoxication that increase the lipid per-
oxidation (LPO) [62, 63]. It was reported that aspartame 
can act as chemical stressor by increasing corticosteroid 
level which in turn has been shown to decrease the size 
and weight of organs due to oxidative damage [64, 65]. 

Formaldehyde, which is the first metabolic product of 
methanol, increases the population of shrunken and dead 
cells [66–68] which might be responsible for decreased 
organ weight.

Aspartame treated animals for 30 and 60 days showed 
duration-dependent decrease in androgens (FSH and 
LH), and steroid (E2 and P4) hormone levels. The decline 

Fig. 3 (g) Magnified view of control ovary section showing developing follicles with normal histological features characterized by well defined granulose 
cells (GC) surrounding the oocyte. (h) Section of ovary treated with ASP for 30 days shows degenerative changes in follicles (DF), degeneration of follicular 
antrium (FA), primary Oocyte (O), theca follicli (thick arrow), corona radiata (arrow head) and zona granulosa (ZG) and decreased number of primary fol-
licles. (i) Section of ovary treated with ASP for 60 days shows degenerative changes in thecal layer of follicle membrane (arrows), zona granulose (ZG), and 
zona pellucida (arrow head). The appearance of pyknotic bodies (atretic bodies) in granulosa cells (star) and granulation of cytoplasm are the indications 
of early follicular atresia. (j) Uterus of control mice showing normal endometrium with stratum basale and stratum functionalis bearing fibrous connective 
tissue and normal tubular glands (arrows). (k) Uterus treated with ASP for 30 days shows atrophic uterine endometrial glands (arrows), squeezed endome-
trial lining (arrow head) and the shapes of blood vessels were also altered (arrows). (l). Uterus treated with ASP for 60 days shows larger endometrial cells 
(arrow head) and atrophic endometrial glands (arrows). Myometrium (M) also appears atrophic due to atrophy of the smooth muscle cells (H & E × 400)
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was significant (p < 0.001) in 60 days of ASP treated group 
as compared to the control group. We also observed 
marked histomorphological changes in ovary and uterus 
of the ASP treated female mice in duration dependent 
manner. Female mice treated with ASP showed many his-
tomorphological changes in the ovarian structure includ-
ing decreased number of growing follicles. Degenerative 
changes were observed in follicular structure like degen-
erating oocytes, theca folliculi, corona radiata and zona 
granulosa. The connective tissue stroma and medulla 
region also shows some degenerative changes and vacu-
olation. Aspartame has markedly damaged the repro-
ductive function of the female mice as is evident from 
the alterations in hormone levels and histomorphologi-
cal changes in ovary and uterus. The toxic effect of ASP 
on the reproductive performance of female mice is also 
manifested by significant (p < 0.05) decrease in preg-
nancy rate, litter size, litter weight and viability index. 
This effect may have been caused by uterine and ovarian 
abnormalities which may have been a direct result of ASP 
exposure. The ovary is an important target organ of many 
toxic chemicals and neuroendocrine disruptors [69–72]. 
We observed that both ovarian and uterine weights were 
significantly (p < 0.01) decreased in ASP treated animals. 
These results suggest that ASP may have toxic effects on 
both ovarian and uterine structures. There are not many 
studies available on the effect of ASP on gonadotropins 
and ovarian steroid hormones. A few studies have inves-
tigated the effect of ASP on male reproductive system 
including testosterone hormone and histology of tes-
tes, sperm quality, viability and motility [73–75]. A sig-
nificant decrease in total antioxidant capacity (TAC) and 
testosterone along with significant increase in malondi-
aldehyde (MDA) was reported following ASP treatment. 
Aspartame administration decreased number, motility, 
viability and maturation of sperms along with increased 
abnormality and DNA damage to sperms [73, 76, 77]. 
Aspartame administration decreased number, motility, 
viability and maturation of sperms along with increased 
abnormality and DNA damage to sperms. Aspartame 
is reported to have deleterious effects on hypothala-
mus which produces gonadotropin releasing hormone 
(GnRH) which goes down the pituitary stalk stimulating 
the pituitary gland to produce gonadotropins stimulating 
the testicles and ovaries to produce testosterone [78, 79]. 
Aspartame is metabolized in the gut releasing the aspar-
tic acid, phenylalanine, methanol, and diketopiperazine. 
Methanol is converted into formaladehyde and formic 
acid above 85oF and is said to have toxic effects on central 
nervous system (CNS), gatro-intestinal (GI) tract, liver, 
kidney and testes [80]. The toxic effects of aspartic acid 
and methanol on testes are due to the potential of these 
two components to cross blood-testes barrier and reduce 
spermatogenesis, reduced tubule size, spermatogenic 

arrest, and inhibition of steroid biosynthesis in Leydig 
cells which is an outcome of oxidative stress [81–84].

Chronic administration of ASP (2 mg/g b. w.) induced 
selective degeneration of all subcelular neurons ultra-
structures both in CA1 pyramidal neurons of hippocam-
pus and in ventral-medial area of hypothalamus, which 
control the activity of pituitary and intense vacuoliza-
tion like damages [79, 85], loss of the intracytoplasmatic 
secretory granules in all cellular ultrastructures of the 
adenohypophysis and therefore alter the homeostasis 
[86]. Electron-microscopy observations revealed that 
ASP treatment induced marked alterations in growth 
hormone (GH) and LH/FSH cells in rats. These altera-
tions were more prominent in either GH or LH/FSH 
secretory cells, indicating a decline in growth and gonad-
otropic hormones secretion. Besides, young prepuber-
tal rats appear to be most susceptible to the deleterious 
effects of ASP [87, 88]. Aspartame induced lesions of 
the mediobasal hypothalamus are associated with a low 
release of gonadoliberins and low level of gonadotropic 
hormones including inhibition of the synthesis and 
secretion of testosterone. All these changes have an over-
all effect on the diminution of the reproductive capacity 
[79]. These observations are in agreement with the find-
ing which shows that administration of excitotoxins (glu-
tamate, aspartic acid, cysteine, and their homologues) 
to lab rodents through different routes caused neuronal 
degeneration, associated with axonaldendritic lesions 
[89–91].

Some studies showed that increased concentrations of 
ASP metabolites like phenylalanine, aspartic acid, and 
methanol are responsible for alterations in hormone lev-
els [67, 92, 93]. Increased concentrations of aspartame 
metabolites were reported in blood following ASP con-
sumption [94]. Excessive phenylalanine interferes with 
the tyrosine and tryptophan resulting in decreased con-
centrations of the brain catecholamine, serotonin and 
dopamine disturbing the balance of neurotransmitters. 
This in turn leads to neurological, behavioural and hor-
monal changes [67, 68, 94]. Granulosa cells and follicular 
membrane cells in the follicle are the target cells of ste-
roid hormones and gonadotropin [95, 96].

We also found that the ovarian and uterine weights 
were significantly decreased in ASP treated groups. In 
addition to this, histomorphological changes in both 
ovary and uterus were also observed in ASP treated 
groups after different intervals. The changes induced in 
the ovarian structure after ASP administration charac-
terized by decreased number of growing follicles, degen-
erative changes were observed in follicular structure i.e. 
degenerating oocytes, theca layers, corona radiata and 
zona granulosa. The connective tissue of medulla region 
also showed some degenerative changes and vacuol-
ization. Besides, ASP also induced histomorphological 
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changes in the uterine structure including atrophic uter-
ine endometrial glands, strained endometrial lining, 
disruption of the endometrium and the shapes of blood 
vessels were also altered. Steroid hormones like estradiol 
(E2) and progesterone (P4) play a very important role in 
the growth and differentiation of reproductive tissues 
and maintenance of fertility [97, 98]. Estrogen enhances 
the sensitivity of granulose cells to FSH and LH, thereby 
increasing the biosynthesis of progesterone by granulose 
cells [97, 99]. Estrogen modulates steroidogenesis, pro-
motes granulose cell proliferation and maintains follicu-
lar development [100–102]. The release of LH and FSH 
from the anterior pituitary gland regulates the secretion 
of reproductive hormones from the ovary [103, 104]. 
The main function of FSH includes stimulation of ovar-
ian growth and promotion of follicular development. 
Luteinizing hormone plays an important role in follicular 
maturation, ovulation, corpus luteum development and is 
involved in the synthesis of steroid hormones [105–110]. 
A decreased tendency of females to get pregnant could 
be due to decreased levels of reproductive hormones. 
We observed that the endometrium was damaged, and 
the endometrial glands were atrophied which may be 
the cause of low fertility rate of ASP treated groups. It 
is reported that endometrial completeness is critical for 
the successful implantation of an embryo [111, 112]. 
Apart from this, a significant decrease in litter size was 
observed in our study along with decreased body weight 
of pups in all ASP treated groups. The significant change 
in gestation period, viability index and weaning index in 
90 days ASP treated group. The reduction in body weight 
of pups is attributed to insufficient availability of sub-
strates including glucose to the foetuses due to possible 
diminution of substrates in the ASP fed maternal blood 
[113–116]. It was observed that methanol formed during 
the ASP metabolism might be responsible for preterm 
delivery as methanol has been shown to decrease gesta-
tional length in primates [65, 117–119].

Conclusion
In light of the present findings ASP has a correlation 
with the possibilities of reproductive toxicity. The study 
conclude that aspartame and its metabolites have the 
potential to affect female reproductive systems, gestation 
period and fetal development and pregnancy outcomes. 
We propose that ASP affects hypothalamic–pituitary–
gonadal axis (HPG axis) altering the release of LH and 
FSH from the anterior pituitary gland and damages the 
histomorphology of ovary and uterus like follicular matu-
ration, ovulation and corpus luteum development. It is 
also concluded that uterine endometrium abruption and 
the atrophy of the uterine glands were the result of ASP 
intake. ASP decreased the tendency of animals to get 
pregnant by deminishing the levels of gonandotropins. 

Small littersize,decreased fetal weight. and extended 
gestational period supports the conclusion. That aspar-
tame intake should be taken seriously. Aspartame related 
research investigations are further advised to identify 
mechanism and pathways affected by ASP consumption 
and its metabolic breakdown products to understand the 
molecular mechanism of reproductive alterations and 
related disorders progression.
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