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Abstract
Background Throughout the course of pregnancy, small maternal spiral arteries that are in contact with fetal 
tissue undergo structural remodeling, lose smooth muscle cells, and become less responsive to vasoconstrictors. 
Additionally, placental extravillous trophoblasts invade the maternal decidua to establish an interaction between the 
fetal placental villi with the maternal blood supply. When successful, this process enables the transport of oxygen, 
nutrients, and signaling molecules but an insufficiency leads to placental ischemia. In response, the placenta releases 
vasoactive factors that enter the maternal circulation and promote maternal cardiorenal dysfunction, a hallmark of 
preeclampsia (PE), the leading cause of maternal and fetal death. An underexplored mechanism in the development 
of PE is the impact of membrane-initiated estrogen signaling via the G protein-coupled estrogen receptor 
(GPER). Recent evidence indicates that GPER activation is associated with normal trophoblast invasion, placental 
angiogenesis/hypoxia, and regulation of uteroplacental vasodilation, and these mechanisms could explain part of the 
estrogen-induced control of uterine remodeling and placental development in pregnancy.

Conclusion Although the relevance of GPER in PE remains speculative, this review provides a summary of our 
current understanding on how GPER stimulation regulates some of the features of normal pregnancy and a potential 
link between its signaling network and uteroplacental dysfunction in PE. Synthesis of this information will facilitate the 
development of innovative treatment options.
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Background
Preeclampsia (PE) is a pregnancy-specific syndrome that 
is estimated to affect approximately 4–5% of pregnancies 
worldwide [1–3]. In developed countries, it is responsi-
ble for about 16–18% of maternal deaths and about 40% 
of fetal and neonatal deaths [4]. Classically, when preg-
nant women are diagnosed with PE, they present with 
new-onset hypertension and proteinuria after 20 weeks 
of gestation [5], but the disease may still be identified in 
the absence of renal dysfunction [6–8]. PE is a heteroge-
neous disease since its epidemiology and clinical presen-
tation vary between early-onset PE, developing before 34 
weeks of gestation, and late-onset PE, occurring after 34 
weeks of gestation [9, 10]. This heterogeneity defines the 
two-stage model of PE [8] which is discussed later in this 
review.

Recent evidence reveals that PE induces short-term 
health consequences for both mother and child, with 
increased risk of cardiorenal disturbances in later life 
[11–13]. Therefore, targeted therapies with short- and 
long-term benefits are desperately needed, as delivery of 
the fetus and placenta remains the only definitive treat-
ment [14]. Estrogens are sex hormones that act as cru-
cial regulators of the female reproductive system, and 
their role in the maintenance of uteroplacental homeo-
stasis has been documented in numerous preclinical and 
clinical studies [15–19]. Estrogen action is believed to 
be mediated by three estrogen receptors (ER): Estrogen 
receptor α (ERα), β (ERβ), and G protein-coupled estro-
gen receptor (GPER). To evaluate the impact of GPER 
on estrogen-induced regulation of pregnancy, it is essen-
tial to establish GPER’s autonomous function from the 
ER homologues in various aspects of pregnancy. In this 
work, we briefly revisit the key physiological features of 
pregnancy and pathophysiological mechanisms of PE. 
Since the pharmacological profile of GPER is currently 
under investigation in this field, we then discuss the cur-
rent understanding of the biomolecular contributions of 
this metabotropic receptor towards normal placentation 
and pathogenesis of PE to shed new light on the poten-
tial benefits of selectively targeting GPER for the treat-
ment of this obstetrical disease. In this narrative review, 
of all literature published through December 2022 was 
conducted using numerous primary topic headings 
combined with appropriate terms for each section of 
the article [e.g., pregnancy, preeclampsia, uteroplacen-
tal interface, estrogen, GPR30 or GPER, placentation, 
extravillous trophoblast, migration, invasion, endothe-
lial dysfunction, oxidative stress, inflammation, hypoxia, 
angiogenesis]. Relevant full text articles published in 
English language were included in this manuscript.

Biomolecular aspects of placentation and 
preeclampsia
Physiological placentation
Normal early human placental development involves 
envelopment of the embryo inside the endometrial lin-
ing around day 10 post-conception. Under hypoxia and 
hypoglycemia, nutrition of the blastocyst is provided by 
secretions from the endometrial glands until the placen-
tal circulation is completely established [20]. At 8–10 
weeks of gestation, placental extravillous trophoblasts 
(EVTs) undergo a phenotypic transformation into inva-
sive cells [21]. This phenomenon occurs partially through 
an epithelial-to-mesenchymal transition, where epithe-
lial-like adhesion molecules are replaced by vascular-
like adhesion molecules [21]. Following this step, EVTs 
invade the decidualized endometrium to reach the inner 
third of the myometrium [22] and replace smooth muscle 
cells and elastin in the arteries [23]. Subsequently, EVTs 
invade and accumulate in the lumen of the spiral arter-
ies to form ‘arterial trophoblast plugs’ [24]. This process 
occurs through the decidua and is fundamental for the 
development of the uteroplacental circulation, and usu-
ally occurs by 18 weeks of gestation [25–27]. Importantly, 
throughout the course of pregnancy, the small mater-
nal spiral arteries dilate to become compatible with the 
increasing blood demands of the fetoplacental structure 
[28].

Two-stage model of preeclampsia: abnormal placentation
In placentas that develop PE, EVTs fail to transform from 
the proliferative epithelial to the invasive phenotype, 
which is the main cause of incomplete remodeling of the 
spiral arteries [21]. Dysfunction in spiral artery remod-
eling leads to narrowing of uterine vessels and compro-
mises placental blood flow [29, 30]. EVT abnormalities 
result in shallow placentation and insufficient remodeling 
of the spiral arteries, which triggers subsequent ischemia 
of this organ in the first stage of PE [21].

Secondary to shallow EVTs invasion, the ischemic and 
structurally-damaged placenta releases factors into the 
systemic circulation in an attempt to increase blood flow 
and oxygen delivery to the fetus. However, these factors 
also increase oxidative stress in syncytiotrophoblasts 
(STBs), a continuous, specialized layer of epithelial cells 
covering the chorionic villi [31]. Stressed STBs release 
proinflammatory cytokines and antiangiogenic factors 
into the systemic maternal circulation, and injuring mol-
ecules that damage the mother’s vasculature (mainly the 
endothelium) [32–34]. This second stage of PE is char-
acterized by a substantial injury of the maternal vas-
cular endothelium and stimulation of an inflammatory 
response, culminating in clinical symptoms [35, 36].
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Pro-oxidant and inflammatory components of 
preeclampsia
The uteroplacental interface undergoes a pro-oxidant 
stage in the first weeks of normal pregnancy, as the 
increase in the metabolic rate ensuring adequate fetal 
development comes together with oxidative stress in the 
placental tissues. This period of gestation is also charac-
terized by the high expression and activity of antioxidant 
enzymes to maintain oxidative balance [37].

The neutralization of reactive oxygen species (ROS) by 
antioxidant enzymes is disturbed and oxidative stress is 
significantly exacerbated in PE [38]. It is suggested that 
impaired perfusion due to aberrant remodeling of uter-
ine arteries induces placental oxidative stress [39]. For 
example, impaired perfusion leads to repeated events 
of hypoxia/reoxygenation, which in turn triggers oxida-
tive stress in the placenta, and the increasing amount 
of ROS might damage the DNA and induce low-density 
lipoprotein oxidation, with subsequent lesion and/or 
cell death [39]. Importantly, oxidative stress in PE stimu-
lates the synthesis of proinflammatory cytokines such 
as tumor necrosis factor alpha (TNF-α) and interleukin 
6 (IL-6), with a simultaneous reduction in anti-inflam-
matory cytokine production, such as interleukin 10 (IL-
10) [40]. An immunologic imbalance is observed in the 
preeclamptic decidua, where the secretion of TNF-α and 
IL-6, and a decrease of immune cells that normally facili-
tate trophoblast migration [e.g., macrophages, natural 
killer (NK) cells, T cells, and regulatory T cells (Tregs)] 
occur [39, 40]. Additionally, this imbalance activates 
macrophages and neutrophils, inflammatory cells that 
convert oxygen into superoxide radical anions (O2

•−), 
ROS molecules that damage the placenta [39].

Hypoxia and angiogenic disturbances in preeclampsia
It is generally accepted that placentation and embryonic 
development under hypoxia are not pathological events, 
as low oxygen (O2) levels in early gestation expose the 
blastocyst to severe hypoxia in the uterus at day 6 post-
conception [41]. This microenvironmental hypoxia is 
maintained for up to 10 weeks of pregnancy and occurs 
when the spiral arteries become plugged to avoid the 
blood flowing from the maternal circulation into the 
intervillous space [41]. By the end of first trimester, this 
plug is dissolved, and the maternal arteries fully enter 
the intervillous space when then the O2 level raises to a 
“physiological” state [41]. This process of hypoxic-isch-
emic/reoxygenation is essential for fetal and placental 
development [41]. However, it has been recently reported 
that the hypoxic-ischemic/reoxygenation state leads to 
the formation of misfolded and aggregated proteins, 
resulting in excessive endoplasmic reticulum stress and 
an overactivated unfolded protein response. These con-
ditions create a state of proteotoxic stress that surpasses 

the proteostatic capacity of primary human placental tro-
phoblasts, leading to placental insufficiency and the onset 
of preeclampsia-like symptoms [42].

Hypoxia-inducible factors (HIFs) are crucial transcrip-
tion factors that regulate responses to hypoxia and are 
important molecules in both physiological and patho-
physiological processes [43]. HIFs consist of the HIF-α 
subunit (HIF-1α or HIF-2α) and HIF-1β, and only the α 
subunit is regulated by O2 levels [43]. In an O2-depleted 
state, the α-subunit is translocated to the nucleus and 
activates the expression of target genes, thus mediating 
key cellular effects in response to hypoxia, such as angio-
genesis, cell migration/invasion, and immune cell func-
tion [43]. As pregnancy progresses, HIF-1α protein levels 
gradually decrease, and are almost undetectable by week 
12 [44]. However, placental hypoxia eventually persists 
beyond the first trimester in PE, as the expression of HIFs 
is elevated throughout gestation [45].

The pivotal role of hypoxia in PE has been reviewed by 
Hu et al. [45], where they discussed seminal studies with 
humans and animals that experienced hypobaric and/
or normobaric hypoxia. As summarized by the authors, 
persistent hypoxia during pregnancy increases placen-
tal HIF expression, boosts HIF synthesis in trophoblast 
cells, and inhibits the invasive potential of EVTs, with 
impaired spiral artery remodeling observed due to pro-
longed expression of trophoblast-specific HIF-1α [45]. 
Further analysis showed that pregnant mice overexpress-
ing HIF-1α exhibit PE phenotype [46].

The production of soluble Fms-like tyrosine kinase-1 
(sFlt-1) by trophoblasts is triggered during persistent 
hypoxia in PE as a transcriptional response induced by 
high levels of HIF-1α and HIF-2α [47, 48]. sFlt-1 has 
anti-angiogenic properties and is significantly increased 
in blood samples from PE patients [49], contributing to 
disease pathogenesis by inducing endothelial dysfunc-
tion, disrupting angiogenesis, and impairing trophoblast 
invasion [49]. sFlt-1 binds to vascular endothelial growth 
factor (VEGF) and placental growth factor (PlGF) with 
high affinity and inhibit their activity on vascular endo-
thelial cells, which might impair the vascular growth of 
spiral arteries [50]. Transgenic animal models show that 
an increase in circulating levels of sFlt-1 and decrease in 
bioavailability of PlGF results in signs of PE (e.g., hyper-
tension and proteinuria), demonstrating the causal role 
of this pathway in disease pathophysiology [51].

Vascular dysfunction in preeclampsia
An adaptive switch in the uteroplacental vasculature 
from pro-angiogenic stimulation of new vessel growth 
to vasodilation occurs as gestation progresses [52]. Spe-
cifically, from mid-gestation to parturition, necessary 
blood supply to the fetus is highly dependent on endo-
thelium-induced vasodilation in uteroplacental vessels 



Page 4 of 12Alencar et al. Reproductive Biology and Endocrinology           (2023) 21:60 

[52]. As elegantly reviewed by Opichka et al., the imbal-
ance between constriction and relaxation, and hemody-
namic modifications that alter body fluid homeostasis are 
features of PE [53]. Endothelial dysfunction, specifically 
in the form of barrier disruption and impaired vasodila-
tory capacity, is prevalent in PE and is implicated in many 
stages of the disease [53]. Late-stage PE is characterized 
by vascular defects thought to be targeted to the endo-
thelium of some vascular beds, since the incubation of 
myometrial arteries with preeclamptic plasma impairs 
vasorelaxation in endothelium-denuded but not in intact 
vessels [54]. An in vivo study found that flow-mediated 
dilation is reduced in women with previous PE com-
pared with normal pregnancies [55]. Authors highlight 
that flow-mediated dilation is an endothelium-depen-
dent phenomenon, what indicates that these findings are 
endothelial-specific [55].

Generally, the decreased synthesis of relaxing sub-
stances such as nitric oxide and prostacyclin and 
increased vasoconstriction induced by angiotensin II, 
endothelin-1 and vasopressin are considered pathogenic 
mechanisms of PE [56, 57]. It has been demonstrated that 
vascular resistance regulates the systemic circulation and 
has significant effects within specific vascular beds [54, 
55, 58–60]. For example, uteroplacental arteries from 
preeclamptic women produce less endothelial-derived 
vasodilatory molecules than that of women with uncom-
plicated pregnancies, and this may be related to oxidative 
stress [54, 55, 60]. Therefore, the exchange between pla-
centa and fetus is negatively affected by the uteroplacen-
tal resistance, whereas systemic resistance contributes 
to an array of multiorgan dysfunction in PE, such as glo-
merular endotheliosis, liver failure, and central nervous 
system damage [53].

Connecting GPER effects with the pathobiology of 
preeclampsia
It is noteworthy that diethylstilbesterol, a potent ERα 
and ERβ agonist, has a low binding affinity for GPER and 
is associated with various adverse side effects, includ-
ing PE [61, 62]. Similarly, estriol, which is produced in 
large quantities by the placenta, also has low affinity for 
GPER and even acts as a GPER antagonist at micromolar 
concentrations [63]. This suggests that the lower affinity 
of these estrogenic hormones for GPER may be advan-
tageous in the context of PE, a condition where GPER 
is believed to play a role. The fact that these estrogenic 
hormones do not strongly activate GPER signaling may 
help prevent excessive GPER activity that may contribute 
to the development of PE. Therefore, it is possible that 
GPER-selective compounds may have therapeutic poten-
tial for the treatment of PE.

An extensive body of literature has characterized 
GPER as predominantly responsible for the rapid actions 

of estrogen [64–68], its effects on gene expression have 
also been described [69–72]. When estrogen stimulates 
GPER, the transient activation of heterotrimeric G pro-
teins intermediates several downstream signaling events 
[62, 73] that are propagated to the nucleus to modulate 
transcription factors [74]. The ultimate cellular response 
to estrogen results from a complex interplay between 
transcriptional and non-transcriptional phenomenon 
[75].

GPER is expressed in several cell types in humans [76–
81] and rodents [82–89]. Examples of organs/tissues in 
which GPER is expressed are the brain, lungs, prostate, 
liver, ovaries, placenta, pancreas, adipose tissue, vascula-
ture, skeletal muscles, heart, kidneys, and immune cells 
[90–92]. A diverse number of disorders are related to the 
aberrant expression and function of GPER [67, 93], and 
advances in our understanding of the pathogenic roles of 
GPER in PE offer opportunities for targeting this process 
in the development of early disease interventions. For 
example, estrogen receptor knockout models have played 
a crucial role in identifying and evaluating the biological 
significance of GPER. To strengthen the claim that GPER 
is vital in PE, it is imperative to examine the pathological 
changes that occur in estrogen receptor-deficient mice, 
such as hypertension, atherosclerosis, and renal dysfunc-
tion, as these are defining features of PE.

The primary focus of research on GPER’s vascular 
effects has been on its impact on vascular reactivity and 
blood pressure in the short term. When GPER is selec-
tively activated with the G-1 agonist in isolated vessels, it 
causes vasodilation in carotid vessels of mice but not in 
those of GPER knockout mice [94]. Activation of GPER 
results in both acute and chronic reduction in blood 
pressure in ovariectomized mRen2.Lewis rats [94, 95], 
while the absence of GPER due to genetic deletion leads 
to elevated blood pressure in female mice. Although 
estrogen does not decrease plasma cholesterol and lesion 
size in mice lacking ERα [96], it is still able to reduce 
advanced lesion characteristics. Interestingly, in intact 
and ovariectomized female GPER knockout mice, aor-
tas exhibited an exacerbation of lesion size, implying that 
GPER may play a beneficial role in the context of ath-
erosclerosis [97]. These findings suggest that while ERα 
is likely the main mediator of atherosclerotic protection, 
GPER may also contribute to protective mechanisms. It 
is also crucial to emphasize that estrogen offers protec-
tion against renal damage in mice. However, the absence 
of ERα or ERβ genes does not weaken this safeguard [98], 
indicating that GPER may serve as an alternative receptor 
that provides estrogen-induced protection during kid-
ney disturbances. The genetic modifications mentioned 
above emphasize the potential significance of GPER as a 
therapeutic target for cardiorenal disorders, specifically 
in the context of PE. As such, the following sections of 
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this review will examine the linkages between GPER sig-
naling pathways and the pathophysiology of PE. This will 
be achieved by delving into relevant literature, identify-
ing gaps in our understanding, and addressing points of 
controversy.

The role of GPER in the pathophysiology of cancer and its 
correlation with preeclampsia
An analysis of the similarities and differences between 
the physiological state of pregnancy and the pathologi-
cal state of cancer is significant as it may aid in identi-
fying potential therapeutic targets to treat PE, with a 
particular focus on GPER. Numerous reviews have inves-
tigated the potential role of G-protein coupled receptors 
(GPCRs) in cancer [99–101]. These receptors are essen-
tial in regulating metabolism, energy, and tissue homeo-
stasis, which are critical physiological responses that 
cancer cells exploit. Furthermore, GPCRs are often lik-
ened to a “chronic wound” in the context of cancer, given 
their involvement in cellular processes that facilitate 
inflammation, tissue remodeling, and angiogenesis [102, 
103] similar to those observed during normal placenta-
tion [104]. Within this paradigm, GPER’s participation 
in estrogen-induced carcinogenesis is postulated based 
on the view that cancer is a chronic wound caused by 
imbalanced glandular epithelial homeostasis [105]. Con-
sequently, GPER stimulates estrogen-induced carcino-
genesis by triggering intracellular signaling pathways that 
allow for malignant cells utilize several molecular mecha-
nisms found in trophoblastic cells, such as migration and 
invasion, angiogenesis, immune tolerance, proliferation, 
differentiation, apoptosis, and survival, to establish a sup-
portive environment, avoid apoptosis, and elude the host 
immune response [105–108].

GPER and extravillous trophoblast invasion
Although EVTs are highly invasive in the early stages of 
pregnancy, this phenotype progressively decreases to 
avoid excessive invasion of placental tissue in the uterus 
[109]. Importantly, Tong et al. reported that GPER is 
expressed in human EVTs at different stages of preg-
nancy (first trimester and term placentas) and modulates 
EVT function [109]. Additionally, placentas collected 
at term from PE women present a dramatic reduction 
in GPER expression, which may be a causative factor in 
disease pathogenesis [109]. Furthermore, it was demon-
strated that GPER levels in EVTs could be upregulated 
by estrogen treatment, which implies that the reduced 
expression of GPER is probably attributed to impaired 
estrogen synthesis in PE placentas [109].

The migratory potential of EVTs is triggered by matrix 
metalloproteinases (MMPs), cathepsins, and urokinase 
plasminogen activator, which are biomolecules that 

degrade the extracellular matrix of uterine tissue and 
facilitate EVT invasion [110, 111].

Tong et al. further elucidated the mechanisms under-
lying GPER-mediated EVTs invasion when they cultured 
and incubated an immortalized human trophoblast cell 
line (HTR8/SVneo) with G-1 and estrogen [109]. Acti-
vation of GPER with both G-1 and estrogen increased 
the expression of MMPs, specifically MMP-9, in HTR8/
SVneo cells [109]. Intriguingly, co-incubation of HTR8/
SVneo cells with G15, a selective antagonist of GPER, 
significantly inhibits the expression of MMP-9 [109]. 
Thus, the authors of this study proposed that MMP-9 is 
a downstream effector of GPER in EVTs invasion [109].

Neoplastic cells invade tissues and metastasize through 
the activity of MMPs that are upregulated by the phos-
phoinositide 3-kinase (PI3K)/protein kinase B (Akt) 
pathway [112, 113]. Remarkably, both G-1 and estrogen 
significantly augment the phosphorylation of PI3K and 
Akt proteins in HTR8/SVneo cells, whereas activation of 
the PI3K/Akt pathway was attenuated by G15 [109]. As 
discussed by the authors, the response of PI3K/Akt to 
GPER modulation is consistent with increased MMP-9 
expression, which suggests that PI3K/Akt could be cou-
pled with MMP-9 expression in trophoblasts to mediate 
GPER-regulated cell invasion [109] (Fig. 1).

A recent study investigated the additional mechanisms 
by which GPER influences EVTs invasion [114]. In this 
original research, scientists applied an RNA sequencing 
technique to HTR8/SVneo human trophoblast cells to 
investigate the relationship between GPER and angiopoi-
etin-like 4 [114]. Angiopoietin-like 4 is a protein encoded 
by ANGPTL4 gene [115]. The key finding of this study 
was the identification of ANGPTL4 as a target gene for 
GPER in EVTs cells [114].

The activation of Hippo tumor-suppressor pathway 
(Hippo pathway) stimulates mammalian serine/threonine 
kinases STE20-like 1 and 2 (MST1/2), which, in turn, 
phosphorylate the downstream large tumor suppressor 
1 and 2 kinases (LATS1/2) [114]. Thus, phosphorylated 
LATS1/2 subsequently phosphorylates Yes-associated 
protein (YAP), the major downstream effector of the 
Hippo pathway [114]. This intracellular signaling results 
in cytoplasmic retention of YAP and its proteolytic deg-
radation [114]. However, when the Hippo pathway is 
inhibited, YAP is dephosphorylated, which prevents its 
export from the nucleus and promotes its transcriptional 
activity by interaction with TEA domain protein family 
of transcription factors [114]. Within the Hippo pathway, 
phosphorylation dependent on LATS1/2 is thought to be 
the most important event in the regulation of YAP signal-
ing activity [116]. This can be explained by the fact that 
preclinical knockout of LATS1/2 abolishes most YAP 
phosphorylation in response to many known upstream 
regulatory signals [116].
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YAP is expressed in human EVTs cells and plays a 
pivotal role in the maintenance of cell proliferation and 
stemness [117]. Interestingly, Cheng et al. showed that 
YAP expression and activity were reduced in PE EVTs 
compared to control cells [114]. Moreover, the transwell 
invasion assay showed that GPER and YAP are required 
for G-1- or estrogen-induced EVTs invasion [114]. 
Accordingly, these data indicate that downregulation of 
GPER and YAP contributes to PE by impairing tropho-
blast cell invasion [114]. In this study, researchers have 
provided further evidence that angiopoietin-like 4 medi-
ates GPER-stimulated trophoblast cell invasion and that 
downregulation of this protein triggers a dysfunctional 
invasion effect in these cells [114] (Fig. 2).

GPER and angiogenesis/hypoxia in preeclampsia
The growth and development of the conceptus is aided by 
the endometrial glands, which secrete various substances 
such as glycogen, lipid droplets, and glycoproteins (such 
as glycodelin, and osteopontin). These substances pro-
vide essential nutrition, facilitate immune reactions and 
cell migration, while cytokines and growth factors [such 
as epidermal growth factor (EGF) and VEGF] promote 
the proliferation and angiogenesis required for placental 
development [118]. In this regard, activation of GPER 
has been shown to play a role in the activation of the EGF 

Fig. 2 Molecular mechanisms by which GPER stimulates EVT migration/
invasion through the Hippo pathway. When GPER is activated by E2 or 
G-1, its Gαq subunit stimulates Rho GTPase, which in turn causes actin cy-
toskeleton organization, a crucial regulator of the Hippo pathway. Actin 
cytoskeleton inhibits LATS1/2 activity, thus increasing the translocation of 
YAP protein to the nucleus. Disruption of actin cytoskeleton or inhibition 
of Rho GTPase facilitate the phosphorylation/activation of LATS1/2 and 
subsequent inhibition of YAP nuclear translocation and activity. This results 
in cytoplasmic retention of YAP and its proteolytic degradation. However, 
the inhibition of LATS1/2 by the actin cytoskeleton is a crucial mechanism 
responsible by YAP transcriptional activity in the nucleus, where this pro-
tein encodes the synthesis of ANGPTL4. When ANGPTL4 is produced, it 
modulates the EVT cell migration/invasion and subsequent spiral artery 
remodeling. Additional mechanisms involved in the GPER-induced ANG-
PTL4 synthesis by the Hippo pathway are provided in this figure and have 
been published elsewhere [142]. GPER, G protein-coupled estrogen recep-
tor; EVT, extravillous trophoblast; Hippo pathway, Hippo tumor-suppressor 
pathway; LATS1/2, large tumor suppressor 1 and 2 kinases; YAP, Yes-associ-
ated protein; ANGPTL4, angiopoietin-like 4. This artwork was created using 
the BioRender software

 

Fig. 1 Overview of GPER signaling involved in the modulation of EVT 
migration/invasion through the PI3K/Akt-MMP-9 axis. Pharmacological 
modulation of GPER by E2 or its selective agonist G-1 stimulates distinct 
subunits of heterotrimeric G proteins. Gαq and Gαs are examples of sub-
units stimulated by GPER, which augment the intracellular levels of second 
messengers (Ca2+ and cAMP) to promote activation of PI3K/Akt enzymes. 
Once activated, PI3K/Akt cascade triggers NF-κB translocation to the 
nucleus, where it encodes the synthesis of MMP-9, a downstream effec-
tor of GPER-regulated EVT cell migration/invasion and subsequent spiral 
artery remodeling. Additional mechanisms involved in the GPER/PI3K/
Akt/MMP-9 downstream signaling pathway are provided in this figure 
and have been published elsewhere [140, 141]. GPER, G protein-coupled 
estrogen receptor; EVT, extravillous trophoblast; PI3K, phosphoinositide 
3-kinase; Akt, protein kinase B; MMP-9, matrix metalloproteinase 9; E2, es-
trogen; cAMP, cyclic adenosine monophosphate; NF-κB, nuclear factor-κB. 
This artwork was created using the BioRender software
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receptor (EGFR) in cancer cells, which provides insight 
into its potential role as a regulator of angiogenesis in 
placental development. GPER stimulates the downstream 
signaling pathway of EGFR through transactivation [64], 
which is achieved by an EGFR ligand-dependent pathway. 
The transactivation process involves an increase in MMP 
expression by GPER, leading to the release of membrane-
anchored EGFR ligands. In this pathway, GPER activation 
leads to the dissociation of the G-βγ complex and subse-
quent activation of the Src-related tyrosine kinase fam-
ily downstream, along with phosphorylation of the Shc 
adapter protein, which enhances MMP expression and 
activity in the cell membrane, which in turns leads to the 
release of heparin-binding epidermal growth factor [67, 
119, 120]. Therefore, we can infer that MMPs are not sim-
ply are secreted by the cells. In this particular instance, 
their actions are influenced by the plasma membrane, 
specifically in the release of membrane-tethered EGF-
like ligands. The release of these ligands subsequently 
activates EGFR and triggers both the mitogen-activated 
protein kinase (MAPK)/PI3K and Akt pathway in cancer 
cells, leading to increased proliferation and angiogenesis 
[67, 119, 120]. This information is intriguing as it suggests 
a possible role of GPER-induced EGFR transactivation in 
aiding placental development.

The biomolecular roles of GPER in hypoxia and angio-
genesis during PE have not been dealt with in-depth yet, 
with only few studies presenting general data such as 
changes of GPER expression levels in HTR8/SVneo cells 
submitted to hypoxia-reoxygenation [121] and GPER 
role in modulating the imbalance between proliferation 
and apoptosis induced by hypoxia-reoxygenation in tro-
phoblast cells [122]. Molecularly, research is also needed 
to determine possible effects of GPER in the regulation 
of expression and activity of key markers of hypoxia and 
angiogenesis in PE (e.g., HIF-1α and VEGF). Since nor-
mal placentation exhibits many features common to 
cancer [123], here we outline some important signaling 
pathways described for GPER in malignant cells that 
could be exploited in PE.

The relationship between GPER and HIF-1α seems 
to be cycle-regulated, as some studies show that GPER 
expression is increased by HIF-1α [124, 125], and that 
HIF-1α is up-regulated by GPER [126, 127]. Bioinfor-
matic analysis has shown the presence of a hypoxia-
responsive element located within the promoter region 
of GPER gene in tumor cells [124], and De Francesco 
et al. found a functional cooperation between HIF-1α 
and GPER in breast cancer cells associated fibroblasts 
[127]. They have shown that a low O2 tension upregu-
lates HIF-1α which, in turn, increases the expression of 
GPER, and that these both molecules are recruited to the 
hypoxia-responsive element site located within the VEGF 
promoter region and cooperatively act as a functional 

complex for the transcription of VEGF and induction 
of tumor angiogenesis [127]. De Francesco et al. further 
highlighted that their results may also disclose an estro-
gen-independent action elicited by GPER [127].

As addressed earlier in the present work, HIF-1α lev-
els are increased throughout pregnancies complicated by 
PE. Therefore, intriguing questions arise: (1) If HIF-1α 
stimulates the transcription of GPER independently of 
estrogen agonism in malignant cells, why is the GPER 
expression reduced in hypoxic placentas? (2) Shouldn’t 
the relationship between HIF-1α and GPER be cycle-reg-
ulated in the PE context as well? Further identifications 
of context-specific HIF-1α and GPER interaction pattern 
could be crucial for responding to these questions and 
developing targeted therapies for PE.

Regulation of systemic vs. uteroplacental vascular tone by 
GPER
Accumulating findings have been well described and 
reviewed in the literature, concerning the roles triggered 
by GPER in maintaining the homeostasis of the cardio-
vascular system [95, 128–132]. Since the mesenteric vas-
cular bed significantly contributes to the total peripheral 
resistance [133] and both structural and functional alter-
ations in mesenteric vessels are involved with the patho-
genesis of systemic hypertension [134–136], it would 
be of great importance to differentiate the GPER profile 
between mesenteric and uterine vasculature from non-
pregnant, normal pregnant and preeclamptic subjects. In 
this regard, Mata et al. have published the first study that 
investigated GPER expression and its vasodilator activ-
ity in a blood vessel-specific pattern during pregnancy 
in rats [137]. They found that GPER expression does 
not change in mesenteric vasculature when compared 
between pregnant and nonpregnant rats [137]. Further-
more, they showed that G-1 promoted vasodilation in a 
concentration-dependent manner, but with no significant 
difference in the mesenteric vasculature of pregnant vs. 
virgin rats [137]. More recently, it was found that GPER 
is greater expressed in uterine radial arteries from preg-
nant rats than in nonpregnant [138]. The authors of this 
study also showed that G-1 promotes relaxation of iso-
lated radial uterine arteries, and that its vasodilatory 
effect was more pronounced in vessels from pregnant 
than that in nonpregnant animals [138], what establishes 
a role of GPER in the regulation of rat uteroplacental vas-
cular tone. In order to better support their conclusions, 
the same research group have shown that GPER-medi-
ated vasodilation in rat uterine arteries is vascular-bed 
specific and correlated with gestational age [139]. In this 
study, G-1 elicited vasodilation in mesenteric arteries 
with a similar potency compared between nonpregnant 
and pregnant rats [139], contrary to the findings of G-1 in 
the uterine vasculature where its vasodilatory profile was 
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significantly higher in vessels from pregnant (at different 
gestation periods) vs. nonpregnant animals [139]. The 
authors attributed this vascular-bed specific effect of G-1 
to the differences in GPER expression amongst mesen-
teric and uterine vasculature since they found no changes 
in GPER levels in mesenteric arteries from nonpregnant 
vs. pregnant rats, but they did find that GPER is greater 
expressed in uterine arteries from pregnant than in non-
pregnant rats, suggesting again that pregnancy-induced 
modulation of GPER is specific to uterine arteries [139].

GPER vasodilation in rat uterine arteries has been 
found to be endothelium-dependent and mediated by the 
nitric oxide-cyclic guanosine monophosphate (cGMP) 
axis [138] considering that G-1 effect was abolished 
after removal of the endothelium and inhibition of nitric 
oxide production with a further significant reduction of 
its vasodilatory efficacy shown after inhibition of cGMP 
synthesis [138]. Moreover, it has been recently described 
a possible smooth muscle-related mechanism involved 
in the uterine vascular responses to G-1 [139]. Interest-
ingly, this original research showed that the blockage of 
L-type calcium channels caused a three-times reduction 
of the G-1-induced vasorelaxation in rat uterine arter-
ies and inhibition of extracellular signal-regulated pro-
tein kinases 1 and 2 (ERK1/2) protein attenuated G-1 
response by 24%, which is suggestive of a partial contri-
bution of ERK1/2 pathway in the mechanism of action of 
GPER in uterine arteries [139]. Accordingly, these find-
ings are supportive of a physiological role of GPER in the 
uterine circulation adaption to pregnancy.

Conclusion
In this review, we have discussed the link between GPER 
activity and some of the key pathophysiological features 
of PE. It is evident that the roles of GPER in the regula-
tion of uteroplacental cell functionality in normal preg-
nancy and in the preeclamptic environment are largely 
unknown. The successful characterization of GPER as a 
pharmacological target to treat PE requires significantly 
more research into what determines its potential of mod-
ulating biomarkers of oxidative stress, hypoxia, angiogen-
esis, inflammation and vascular dysfunction. Since most 
of the studies that are designed to clarify the mechanisms 
by which GPER affects uteroplacental biology are per-
formed in vitro, it will be important to unravel its roles 
in different in vivo models of PE, as well as in normal 
pregnancy.
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