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Abstract 

Although psychoactive drugs have their therapeutic values, they have been implicated in the pathogenesis of male 
infertility. This study highlights psychoactive drugs reported to impair male fertility, their impacts, and associated 
mechanisms. Published data from scholarly peer-reviewed journals were used for the present study. Papers were 
assessed through AJOL, DOAJ, Google Scholar, PubMed/PubMed Central, and Scopus using Medical Subjects 
Heading (MeSH) indexes and relevant keywords. Psychoactive drugs negatively affect male reproductive functions, 
including sexual urge, androgen synthesis, spermatogenesis, and sperm quality. These drugs directly induce testicular 
toxicity by promoting ROS-dependent testicular and sperm oxidative damage, inflammation, and apoptosis, and they 
also suppress the hypothalamic-pituitary–testicular axis. This results in the suppression of circulating androgen, 
impaired spermatogenesis, and reduced sperm quality. In conclusion, psychoactive drug abuse not only harms 
male sexual and erectile function as well as testicular functions, viz., testosterone concentration, spermatogenesis, 
and sperm quality, but it also alters testicular histoarchitecture through a cascade of events via multiple pathways. 
Therefore, offering adequate and effective measures against psychoactive drug-induced male infertility remains 
pertinent.
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Introduction
Psychoactive drugs  are substances that alter the func-
tions of the nervous system and result in the modula-
tion of perception, mood, consciousness, cognition, and 
behaviour, including sexual behaviour. These drugs may 
have either licit (acceptable) or illicit (prohibited) usage. 
This heterogeneous class of drugs (Table 1) is commonly 

used for medical and recreational purposes. The use of 
psychoactive drugs without restraint is expanding rapidly 
per day, making the misuse of such drugs a public health 
concern [31, 70]), coupled with the need for an in-depth 
understanding of the pathophysiological impacts. Until 
recently, these brilliant tints and labelled substances were 
readily available via peddlers’ outlets, often known as 
"drug stores," or the internet [31].

Abusers of psychoactive drugs in a culture or group 
are easily identifiable by their unfavourable effects on 
both consumers of these substances and non-users [63]. 
The International Classification of Diseases, 10th Revi-
sion (ICD-10) classification takes into account the spe-
cific mental and behavioural problems that are associated 
with substances like alcohol, nicotine, opioids, cocaine, 
stimulants, hallucinogens, sedatives, hypnotics, cannabis, 
cannabinoids, and volatile solvents [32]. Ethical issues 
have prevented human interventional studies on the 
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effects of smoking cigarettes, being around second-hand 
smoke, abusing recreational drugs, and drinking alcohol. 
As a result, observational studies constitute a chunk of 
the available data in the literature [43]. However, there 
are several reports on animal models [92].

Since substance abuse is on the rise globally, result-
ing in a global menace of public health concern, and 
psychoactive drugs seem to be a significant component 
of popularly abused drugs and cocktails, understanding 
the mechanistic effects of these drugs on male fertility is 
essential. Therefore, this narrative review focuses on psy-
choactive drugs’ male reproductive health consequences. 
The associated (histo)pathological mechanisms are also 
discussed. The information provided in the present study 
will enhance our understanding of the pathogenesis of 
psychoactive drug-induced male infertility. It will help 
policymakers make decisions and open a window of ther-
apeutic opportunities for managing psychoactive drug-
induced male infertility.

Cause of male fertility
Male reproductive health is as essential as general health 
since general health influences fertility and sperm qual-
ity directly or indirectly [91], which are influenced by the 
hypothalamic-pituitary–testicular (HPT) axis [5] (Fig. 1). 
Infertility is the inability to achieve conception after at 
least a year of adequate, unprotected sexual activity. Male 
factors alone or combined with female factors account 
for 30%–50% of infertility cases [73]. Sansone [97] 
reported that male infertility affects over 15% of all cou-
ples attempting to conceive, and in nearly half of these 
instances, male infertility is the primary or contributing 
issue. Male fertility decline is not a theoretical threat; 
research refers to a steady drop in sperm concentration 
over the last 35 years [95].

In examining any infertile male, a complete evalua-
tion to identify predisposing factors is required [95]. Not 
unexpectedly, several acquired and congenital disorders 
may disrupt the delicate processes involved in spermat-
ogenesis [95]. Age is substantially related to decreased 
sperm quality due to ongoing replication from altered 

spermatogonial stem cells [61]. Deoxyribonucleic acid 
(DNA) breakage and chromatin condensation may con-
tribute to male infertility [101].

Increased reactive oxygen species (ROS) cause oxida-
tive stress, the most well-known non-genetic cause of 
male infertility. ROS are required for capacitation, acro-
some reaction, and eventually fertilization; nevertheless, 
both low clearance and excessive generation of ROS may 
impair sperm membrane integrity and cause DNA dam-
age, resulting in decreased reproductive potential [69]. 
Fertile men’s sperm has a greater antioxidant capacity 
than infertile men’s sperm; also, immature teratozoo-
spermia forms create more ROS than average, mature 
sperm [69]. Inflammatory processes and vascular ill-
nesses, particularly varicocele, also promote ROS pro-
duction [88].

Acquired testicular failure or reduced testicular func-
tion after testicular torsion, varicocele, orchitis, or 
cytotoxic therapy is often linked with azoospermia or 
oligozoospermia [48]. Azoospermia is often caused by 
genetic defects such as Klinefelter syndrome or microde-
letions in the human male Y chromosomes AZF (azoo-
spermia factor) region [62]. However, minor nucleotide 
polymorphisms are being explored as a potential "idi-
opathic" oligospermia source. Despite recent findings in 
the genetics of male infertility, most causes of oligozoo-
spermia remain unclear [95].

Sperm deoxyribonucleic acid (DNA) damage may also 
be idiopathic [2]. It increases the frequency of sperm 
quality-related infertility [6]. Although the hypothalamic-
pituitary–testicular axis influences spermatogenesis [29], 
other factors such as disease [2, 11, 14], heavy metal 
exposure [58, 59, 105, 6], and some medications, such as 
anti-psychotics, anti-depressants, and anti-convulsant, 
may impair male fertility. Hence, these medications are 
considered when evaluating male infertility [42].

Effects of stimulants on testicular integrity and sperm 
quality
Methamphetamine is an illegal psychoactive drug that 
has been abused worldwide because of its stimulating 

Table 1 Classification of psychoactive drugs

Stimulants Depressants Opioids (narcotics) Hallucinogens

Cocaine Benzodiazepines (e.g.rohypnol) Heroine Lysergic acid 
diethylamide 
(LSD)

Amphetamine Diazepine Codeine Mescaline

Methamphetamine Alcohol Morpine Psilocybin

Nicotine Barbiturates Opium Ketamine

Caffeine Gamma-hydroxybutyrate Oxycordone Ecstasy
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and euphoric effects [80, 97]. In the realm of reproduc-
tive toxicology, methamphetamine has been identified as 
a critical substance [80]. Nudmamud-Thanoi and Thanoi 
[80] found that methamphetamine can change the shape, 
concentration, and activity of apoptotic cells in the semi-
niferous tubules of male rats.

A dose-dependent impact on sperm quality has been 
observed in rats treated with methamphetamine. Yama-
moto  et al.  [104] found methamphetamine-induced 
apoptosis of seminiferous tubules in the male mouse 
testis 24  h after treatment with 5, 10, and 15  mg/kg of 
methamphetamine. This finding was corroborated by 
the reports of Alavi  et al.  [18], who observed increased 
apoptosis of the germ cells after repeated doses of meth-
amphetamine. Methamphetamine-induced apoptosis of 
the germ cells may be due to its direct genotoxicity on the 
cells [80]. In addition, Alavi et al. [18] found that repeated 
administration of methamphetamine, particularly at 5 
and 10  mg/kg, caused not just germ cell apoptosis but 
also a reduction in cell proliferation and an alteration of 
the proliferation/apoptosis ratio in the testis.

The hypothalamic-pituitary–testicular axis is not sig-
nificantly impaired following persistent 3,4-Methyl ene-
dioxy methamphetamine (MDMA) use [23]. The reports 
on the effect of MDMA on steroidogenesis in rat models 
are inconsistent [30]. Except for Harris  et al.  [53], who 

observed a marked rise in dehydroepiandrosterone levels 
but no impact on luteinizing hormone (LH) and follicle-
stimulating hormone (FSH), there is a paucity of data 
reporting the impact of MDMA on male reproductive 
hormones.

Concerning histopathology indices, Barenys et al.  [23] 
found that animals treated with MDMA had altered 
testicular tissue. Although the histoarchitecture of the 
epididymis was preserved following MDMA exposure, 
testicular histopathological examination revealed tubular 
degeneration and interstitial oedema.

The National Institute on Drug Abuse (2019) reported 
that cocaine addiction elicited epigenetic modification, 
resulting in an altered response to cocaine in an animal 
model’s male but not female offspring. At a high concen-
tration of cocaine, it binds specifically to testicular sper-
matozoa [76] and induces direct toxic effects. Prolong 
(≥ 5-year) cocaine usage was linked to reduced sperm 
concentration and motility and an increase in the pro-
portion of sperm with aberrant morphology [25]. Short-
term or long-term cocaine use slowed spermatogenesis 
and caused changes in the testes’ ultrastructure [46, 90]. 
Cocaine stops spermatogenesis and tubule development 
immediately by causing cell death, sloughing, lipid drop-
lets, and vacuoles. Under a light microscope, low-dose 
cocaine therapy decreased normal seminiferous tubules 

Fig. 1 The hypothalamic-pituatary-testicular axis +  = stimulatory effect;—= inhibitory effeect. The hypothalamic-pituitary–testicular axis tightly 
regulates the male reproductive function. Gonadotropin releasing hormone (GnRH) is released in pulsatile manner from the hypothalamus 
to stimulate the release of the gonadotropins, which include the follicle stimulating hormone (FSH) and luteinizing hormone (LH). These 
gonadotropins stimulate the testes to maintain optimal testicular function. FSH stimulates the Sertoli cells to drive spermatogenesis, while LH 
stimulates the Leydig cells to promote testosterone biosynthesis, which is also required for sexual drive (libido) and spermatogenesis
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by 50% and high-dose by 40%. After moderate and high 
dosages, regressive tubules grew from 50 to 60% and 
from 60 to 90%, respectively, whereas normal tubules 
declined. At both cocaine doses, there was a significant 
(36% and 25% to 29%) decrease in the mean tubular 
diameters (MTD), excluding the tunica propria, and the 
surface occupied by the tubules (volume density, Vv, due 
to the sloughing of degenerating cells in the seminiferous 
tubules; both testes had a volume reduction [90]. Cocaine 
may have triggered apoptosis, which may explain these 
alterations [67].

Li et al. [66] found a statistically significant increase in 
germ cell death as early as 15  days after cocaine injec-
tion and lasting up to 90 days, consistent with the histol-
ogy of cocaine-induced testicular shrinkage. These data 
imply that persistent cocaine treatment may promote 
apoptosis and kill germ cells in rat testes. TUNEL label-
ling showed rat seminiferous tubule apoptosis. TUNEL 
staining requires three DNA ends from apoptotic cells’ 
DNA fragmentation. No testicular inflammation, high 
levels of necrotic cells, or random DNA breakage were 
seen after cocaine administration. Necrosis is unlikely to 
cause cocaine-induced germ cell loss. Cytochrome c and 
caspase cascade activation in cocaine-induced testicular 
apoptosis have been documented. Li et al.  [67] reported 
cocaine-induced caspase-9 activations. Cocaine-treated 
testes showed higher caspase-3 activity on days 15–90 
compared to controls. Cocaine exposure enhanced cas-
pase-9 activity, which peaked on day 15 and decreased 
until day 90. At each time point, caspase-9 and -3 find-
ings differ from controls. Available data reveals that two 
proteins in testicular tissue bind [3H] cocaine saturable 
and specifically. Both have different binding affinities, 
with one having a higher affinity than the other [65, 4, 
72]. It is likely a step towards understanding the mecha-
nism of action involved in cocaine-induced testicular 
apoptosis. Also, George et al. [46] reported that lowered 
fertility and smaller litter sizes were seen in rats exposed 
to continuous high doses of cocaine in males prior to 
mating.

Effects of depressants on testicular integrity and sperm 
quality
In males, excessive alcohol intake may impair male repro-
ductive function. Interestingly, reports on the effect 
of alcohol on male reproductive function are conflict-
ing. Exposure to ethanol has been shown to change the 
hypothalamic-pituitary–gonadal axis, negatively affect 
the secretory function of Sertoli cells, and cause oxida-
tive stress in the testes [10, 33, 40]. Long-term, excessive 
use of alcohol has been revealed to suppress circulating 
gonadotropin and testosterone, induce testicular shrink-
age, and impair sperm production [47, 28]. However, an 

evaluation of about 8,000 men from the United States 
and Europe showed no change in the serum gonadotro-
pin level but observed a linear rise in serum testosterone 
levels as alcohol consumption increased [60].  Findings 
for an alcohol impact on the testicular function in alcohol 
drinkers demonstrated that sperm parameter aberrations 
were related to considerably raised serum Follicle Stimu-
lating Hormone (FSH), Luteinizing Hormone (LH), and 
17-β-estradiol levels and dramatically reduced serum tes-
tosterone levels, indicating a primary testiculopathy. The 
serum prolactin level was normal [74].

Studies have also reported decreased sperm qual-
ity in heavy alcohol drinkers [50, 33], although Con-
dorelli et al. [28] reported that there were no changes in 
sperm parameters as have been seen in males who con-
sume alcohol regularly. Povey et al. [86] also reported no 
change in semen parameters following moderate alcohol 
use. In consonance with the findings of Povey et al. [86] 
and Condorelli et al. [28], some extensive cohort studies 
failed to find an association between male alcohol use 
and fecundity [52, 75, 106]. Also, alcohol use has been 
studied for its implications on testicular disease. Kuller 
and colleagues examined testis and liver pathology and 
estimated alcohol use in males who died abruptly from 
various causes. Twenty men (14%) exhibited a moder-
ate-to-severe decline in spermatogenesis, while only 
nine exhibited significant or very significant liver fatty 
accumulation [64]. These data imply that alcohol affects 
testicular spermatogenesis more than liver tissue. It is 
generally recognized that alcohol usage causes consider-
able spermatozoal morphological alterations, including 
head breaking, middle distention, and tail curling [51]. 
Horak et al. [56] employed 32P-post labelling to measure 
bulky DNA adducts in sperm cells from 179 male donors 
and infertile patients. In this study, alcohol did not affect 
sperm DNA adducts [99]. Finally, Loft and his colleagues 
[68] assessed the degree of oxidative DNA damage meas-
ured by 7-hydro-8-oxo-20-deoxyguanosine (8-oxodG) in 
sperm DNA among 225 individuals planning their first 
pregnancy. The 8-oxodG level was not significantly cor-
related with alcohol usage.

Alcohol consumption and acute intoxication have been 
linked to sexual dysfunction, including problems with 
arousal and desire and erectile and ejaculatory dysfunc-
tion, all of which might contribute to male infertility [47, 
28, 85]. Researchers are exploring new alcohol-damaging 
pathways. These pathways entail alcohol metabolism, 
induction of apoptosis, and hormone effects. Chronic 
alcohol consumption in male rats affects reproduction 
and offspring health [39].

Pajarinen & Karhunen [83] reported that in a prospec-
tive autopsy investigation, family and acquaintances 
of the dead provided extensive alcohol-use records to 
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examine how alcohol affects spermatogenesis and tes-
tis morphometry. The autopsy cohort included 32 non-
drinkers (daily consumption < 10 g) and 44 heavy drinkers 
(> 80 g). sp26 (81.3%) controls had normal spermatogen-
esis, while six (18.7%) had a partial spermatogenic arrest. 
Only 16 (36.4%) of heavy drinkers had normal spermat-
ogenesis, 23 (52.3%) had a partial or full spermatogenic 
arrest, and five had Sertoli cell-only (SCO) syndrome. 
Heavy drinkers had a marginally reduced mean testicular 
weight compared to non-drinkers. The testicular weight 
was somewhat lower in controls and heavy drinkers with 
spermatogenic arrest and considerably lower in heavy 
drinkers with SCO syndrome compared to males with 
normal spermatogenesis.

The disparity observed in the reported human and 
experimental studies on the impact of alcohol on tes-
ticular and sperm integrity might be due to the differ-
ent study designs. According to Rehm [89], most human 
studies use self-reported data collected through ques-
tionnaires. It is subject to recall bias. Also, the amount of 
alcohol consumed was not objectively quantified.

Studies have shown that despite the ban on Rohypnol 
in many countries, including Nigeria, it is a leading sub-
stance of abuse [19, 45] with a propensity for dependence 
[44]. Hayam  et al.  [54] examine how rohypnol affects 
developing testes. Sixteen pregnant rats’ offspring were 
utilized. Four groups of pregnant rats were evenly split. 
Controls were the first group’s offspring. The second 
group treated female offspring. This group of pregnant 
rats received a single oral therapeutic dosage of 0.036 mg 
of rohypnol daily from conception through the first 
10 days after birth. From the 10th to the 30th day post-
natally, their children got 0.0036  mg of rohypnol orally. 
The third group consisted of the treated offspring of 
untreated females. This group’s pregnant females were 
untreated, but their offspring were treated like the sec-
ond group. The 4th group consisted of non-treated off-
spring of treated females. Similar to the 2nd group, this 
group’s pregnant rats were treated, but their pups were 
not. All groups’ offspring’s testes were obtained at day 
30 postnatally. All of the groups that were given Rohyp-
nol had slower spermatogenesis. The short seminiferous 
tubules without a central lumen, the three to four rows 
of seminiferous cells, the absence of early spermatids 
almost entirely, and the slow transition of supporting 
cells into Sertoli cells all demonstrated this. Histopatho-
logical effects were also notable. In the 2nd group’s testis, 
numerous seminiferous cells were heavily discoloured, 
undetectable, and degraded. The third and fourth groups 
had mildly impacted seminiferous cells, respectively. All 
groups had significant Leydig interstitial cell damage. 
They were small collections in the 4th group or distrib-
uted between the second and third groups’ seminiferous 

tubules. The 2nd group’s testis showed that spermato-
gonia were somewhat impacted, supporting cells were 
abundant and moderately affected, and primary sper-
matocytes and Leydig interstitial cells were the most 
affected. Oluwole and his colleagues (2021) reported that 
rohypnol impaired sexual urge and sexual activity by sup-
pressing the hypothalamic-pituitary–testicular axis in an 
animal model [81]. Using rohypnol led to longer mount, 
intromission, and ejaculatory latencies, as well as lower 
ejaculatory frequencies. It also resulted in a significantly 
extended postejaculatory interval and a lower sperm 
count, motility, and viability, but an increase in the pro-
portion of aberrant sperm morphology [81].

Effects of narcotics/opioids on testicular integrity 
and sperm quality
Morphine and morphine-like opioids have been used for 
many years to make people feel "high" or "mellow" [27]. 
One of the most frequently misused opioids in the United 
States is codeine [22, 45], and it is frequently linked to 
the onset of drug abuse [45]. Although codeine has been 
shown to enhance libido and male sexual activity, it may 
cause a marked reduction in copulatory efficiency and 
fertility indices [7]. Chronic codeine use has also been 
shown to cause testicular degeneration, as evidenced 
by vascular congestion, vacuolation, germ cell loss, and 
arrest of germ cell maturation [12, 77], as well as circulat-
ing testosterone suppression via upregulation of oxidative 
stress-sensitive caspase 3 signalling [12], and downregu-
lation of the human epidermal growth factor receptor 2/
Antigen KI-67 (HER2/Ki67) pathway and modulation of 
tumor protein p53/ B-cell lymphoma-2 (p53/Bcl-2) sign-
aling [8]. In addition, codeine lowers sperm quality and 
induces oxidative sperm DNA damage and apoptosis [5]. 
Codeine may also exert an epigenetic effect as it has been 
reported to impair testicular and sperm DNA integrity 
in male offspring birthed by codeine-exposed dams via 
reprogramming testicular cytoprotective and spermato-
genic genes and steroidogenic proteins [13]. Tramadol 
has been proven to severely lower sperm count, viability, 
and normal morphology [79]. Azari  et al.  [20] demon-
strated that tramadol might significantly reduce sperm 
concentration, motility, and vitality at 10 and 20  mg/kg 
body weight. The effect of tramadol on the sperm quality 
of male albino rats was also shown to be substantial at 50 
and 100 mg/kg body weight, according to Esua et al. [41].

In a separate study, Ahmed & Kurkar [3] evaluated 
tramadol’s effects on male adult rats’ testicles. Twenty 
albino adult male rats comprised the control and trama-
dol groups. Tramadol was subcutaneously administered 
to rats three times a week for eight weeks. Tramadol 
raised prolactin and estradiol while decreasing lute-
inizing hormone (LH), follicle-stimulating hormone 



Page 6 of 12Hamed et al. Reproductive Biology and Endocrinology           (2023) 21:69 

(FSH), testosterone, and total cholesterol. Tramadol also 
boosted testicular nitric oxide, lipid peroxidation, and 
antioxidant enzyme activity. Tramadol decreased pri-
mary spermatocytes, rounded spermatids, Leydig cells, 
and sperm count. Immunohistochemistry showed that 
tramadol enhanced testicular endothelial nitric oxide 
synthase. In addition, studies have shown that tramadol 
distorts the seminiferous tubules and reduces spermato-
genic cells [37, 93]. Tramadol and morphine have been 
shown to cause structural anomalies and distort the nor-
mal rat testis histological structure [102, 98, 105]. Abdel-
latief and his colleagues [1] studied the effects of chronic 
tramadol administration on gonadotrophic and sex 
hormones and histological and morphometrical altera-
tions in rat testicular tissue. Tramadol was administered 
alone to mature male albino rats. After 30 days of treat-
ment, tramadol lowered luteinizing hormone (LH), fol-
licle-stimulating hormone (FSH), and testosterone. They 
observed degenerative changes in seminiferous tubules 
in their study. The spermatogenic layers were contracted 
and separated, with the tubular foundation membrane 
disorganized and vacuolized. The morphometric study 
showed a considerable reduction in tubular diameter and 
epithelial height. Apoptotic cells and abnormal ultras-
tructure were seen in all spermatogenic lineage cells. Ser-
toli cell connections, vacuolation, and large lipid droplets 
were seen. Leydig cells have euchromatic nuclei and an 
expanded endoplasmic reticulum. Ibrahim & Salah-Eldin 
[57] also corroborated these findings with an increased 
apoptotic index. Elevated B-cell lymphoma-2 (Bcl-2) lev-
els related to X protein and caspase-3 expression were 

associated with a significant drop in anti-apoptotic sBcl-2 
in tramadol-treated male adult albino rats.

Effects of hallucinogens on testicular integrity and sperm 
quality
Although researchers have studied ketamine exten-
sively, little is known about the long-term effects of 
other hallucinogens on male fertility. Chronic use 
of ketamine reduces the weight of male reproduc-
tive organs [87, 84]. Qi  et al.  [87] and El Shehaby  et 
al.  [36] reported that ketamine upregulated testicular 
apoptosis and impaired spermatogenesis, evidenced 
by a significant reduction in the mean Johnsen score. 
Ketamine has also been revealed to disrupt the semi-
niferous tubular structure and reduce germ and semi-
niferous luminal sperm cells [87]. Tramadol-treated 
male Wistar rats’ testicular tissues showed varied and 
patchy histopathological alterations, according to Pau-
lis et al. [84]. Vascular congestion and a change in the 
shape of the seminiferous tubules were caused by a 
broken basement membrane, underdeveloped germ 
cells, desquamation of the germ cells, and swelling of 
the interstitium (oedema). The most significant histo-
logical observation was the decrease in normal sper-
matogenic cells and spermatozoa in several tubules. 
Despite enormous germ cell loss, Sertoli cell numbers 
did not decrease, and vimentin expression increased 
dramatically compared to the control group.

Tan  et al.  [100] reported that ketamine adminis-
tration induced a marked decrease in sperm count 
and motility and a corresponding increase in abnor-
mal sperm cells. These effects were reversed and 

Table 2 Effects of psychoactive drugs on male fertility

Drugs Effect References

Stimulants
 Methamphetamine Suppression of circulating testosterone, distortion of testicular histoarchitecture (tubular degeneration 

and interstitial edema), apoptosis of germ cells
[18, 23, 53, 80, 104]

 Coccaine Epigenetic modification [78]

Depressants
 Alcohol Suppression of hypothalamic-pituitary–testicular axis, sexual dysfunction, impairment of testosterone 

biosynthesis and spermatogenesis, testicular shrinkage
[10, 28, 33, 40, 47, 85]

 Rohypnol Suppression of hypothalamic-pituitary–testicular axis, sexual dysfunction, reduced sperm quality [81]

Opioids/narcotics
 Codeine Suppression of hypothalamic-pituitary–testicular axis, reduced circulating testosterone, testicular 

and sperm oxidative damage, testicular cytoprotective and spermatogenic genes reprogramming
[5, 7, 8, 12, 13, 77]

 Morphine Distortion of testicular histoarchitecture [98, 102]

 Tramadol Reduced sperm quality, distortion of testicular histoarchitecture [20, 37, 41, 79, 93]

Hallucinogens
 Ketamine Reduced testicular weight and distortion of testicular histoarchitecture, impairment of spermatogenesis, 

reduced sperm quality, reduced circulating testosterone, impaired male sexual behaviour
[36, 84, 87, 100]

 Cannabis Reduced circulating gonadotropins and testosterone, testicular damage, reduced sperm quality [16, 17, 71, 94]
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approached normalcy 4  weeks after the cessation of 
ketamine administration.

Qi and colleagues [87] found that the messenger 
RNA (mRNA) expression of gonadotropin-releas-
ing hormone (GnRH) was considerably reduced in 
the ketamine group when compared to the control 
group. Qi  et al.  [87] observed that ketamine reduced 
circulating LH, FSH, and testosterone. The reduced 

testosterone levels in ketamine-treated rats may be 
due to decreased gonadotropins and ketamine-led 
suppression of Leydig cell function [84, 87]. Ketamine 
may cause lipid peroxidation and apoptosis of the Ley-
dig cell [103]. El Shehaby et al. [36] demonstrated that 
ketamine impaired testicular and erectile function. 
It was coupled with reduced pre-coital sexual behav-
iour and ejaculation. The histological study turned 

Fig. 2 Effects of psychoactive drugs on sexual function and fertility indices. Psychoactive drugs usually act as stimulants or depressants 
irrespective of their classes. Depressants have been reported to suppress (red arrow) sexual urge, sexual and erectile function, and sexual 
satisfaction via downregulation of circulating androgen and stimulatory neuroendocrine like dopamine, resulting in reduced fertility indices. 
On the other hand, although stimulants may elicit increased (green arrow) sexual urge, sexual and erectile function, and sexual satisfactory 
via a testosterone-independent signaling, they also induce reduced fertility indices

Fig. 3 Effects of psychoactive drugs on testicular integrity and function. Psychoactive drugs promote increased generation of reactive oxygen 
species (ROS) in the testes that overwhelms the scavenging capacity of the protective testicular antioxidant system, leading to oxidative stress. 
These drugs also increase the accumulation of pro-inflammatory cytokines, resulting in cytokine storms. Testicular oxidative stress could be a cause 
and/or a consequence of the cytokine storm; this leads to a vicious cycle of oxido-inflammatory state that disrupts hypothalamic-pituitary–
testicular axis and sperm integrity, resulting in altered testicular function viz. downregulation of the release of gonadotropins and testicular 
testosterone biosynthesis, and impaired spermatogenesis and reduced sperm quality
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up evidence of significant dysspermatogenesis [34]. A 
positive correlation exists between serum testosterone 
and catalase, and a positive correlation between lutein-
izing hormone (LH) and total antioxidant capacity in 
serum (TAC) supports it [35].

Effects of cannabis/marijuana on testicular integrity 
and sperm quality
Cannabis sativa, the plant from which marijuana is 
made, is a mind-altering (psychoactive) substance. 
The chemical composition of marijuana is staggering, 
with over 480 different components. THC (delta-9-tet-
rahydrocannabinol) is widely regarded as the primary 
component responsible for the psychoactive effects of 
cannabis.

Pagotto  et al.  [82] reported that cannabinoids lower 
LH, reduce testosterone synthesis and release, and 
inhibit spermatogenesis. Cannabis has been demon-
strated to induce gonadotoxicity by triggering oxidative 
stress [71, 16]. It is associated with suppressing circu-
lating LH, FSH, and testosterone [38, 17] and reduced 
sperm quality [49, 16].

Alagbonsi and Olayaki [15] revealed that 9-tet-
rahydrocannabinol reduced sperm motility, aver-
age path velocity (VAP), curvilinear velocity (VCL), 
straight-line velocity (VSL), the amplitude of lateral 
head displacement (ALH), and beat cross frequency 
(BCF). Gundersen  et al.  [49] found that men who 
smoked marijuana more than once a week had lower 
sperm concentration, total sperm count, percentage of 
motile sperm, and percentage of morphologically nor-
mal forms. Surprisingly, Hehemann  et al.  [55] found 
that although marijuana may also have a negative 
impact on sperm quality, notably morphology and vol-
ume, it may protect against aberrant sperm motility.

Testicular atrophy in animal models has been linked 
to the use of cannabis [21]. A decrease in spermatogo-
nia, corresponding basement membrane damage with 
relatively scanty cytoplasm and shrunken nuclei, and a 
reduction in seminiferous tubule diameter were observed 
in rat models of cannabis use [71, 94, 16].

Belladelli  et al.  [24] performed a meta-analysis. 
Their findings showed that cannabis research on 
reproductive and sexual health is poor. Cannabis 
usage has no clinical impact on testicular function, 
according to their comprehensive study and meta-
analysis. Due to the limited number of studies and 
the variability of the available research, they could 
not rule out a cannabis influence on testicular func-
tion, and the present study does not ensure safety. 
There are some drawbacks. First, most research did 
not disclose cannabis use profiles, which restricts 
the data’s interpretability since cannabis use fre-
quency and amount vary [26]. The dose-dependent 
impact of cannabis consumption was also impos-
sible to study due to its unpredictability. While 
they employed a classification of semen quality per 
World Health Organization (WHO) reference levels, 
the researchers could not ignore the potential for a 
difference between cannabis users and non-users 
if they assessed the actual values of semen param-
eters. Pregnancy results are essential to defining 
cannabis’s most important reproductive clinical 
aims. Recruitment tactics may prejudice against 
age or geography (e.g., markets versus fertility clin-
ics). Finally, all research used self-reported canna-
bis usage, which may be unreliable due to stigma or 
fear of penalties. However, recent research supports 
survey methods [96].

Conclusion and recommendations
Summing up, psychoactive drugs exert negative effects 
on male reproductive functions (Table  2), viz., sexual 
urge (Fig.  2), androgen synthesis, spermatogenesis, and 
sperm quality (Fig.  3). These drugs directly induce tes-
ticular toxicity by promoting ROS-dependent testicular 
and sperm oxidative damage, inflammation, and apop-
tosis (Fig.  4), and they also suppress the hypothalamic-
pituitary–testicular axis. This results in the suppression 
of circulating androgen, impaired spermatogenesis, and 
reduced sperm quality.

Fig. 4 Effect of selected psychoactive drugs on testicular histoarchitecture. A-B) Codeine-treated rabbits showed distorted testicular architecture. 
The seminiferous tubules showed thickened propria indicative of cessation of spermatogenesis (black arrow). There are vacuolation, sloughed 
germ cells, maturation arrest, and reduced mature sperm cells within the tubular lumen (red circle). There is evidence of vascular congestion 
(black circle and red arrow). The leydig cells appear reduced (green arrow). (Photomicrographs are from our laboratory-published: [12]. Plate C1a 
and 1b are the original and pseudo images respectively of the testicular histoarchitecture of vehicle-treated control rats compared with those 
of codeine-treated rats (C2a and 2b) showing p53 expression. Codeine treatment led to significantly increased p53 expression. Also, plate D1a 
and 1b are the original and pseudo images respectively of the testicular histoarchitecture of vehicle-treated control rats compared with those 
of codeine-treated rats (C2a and 2b) showing Bcl-2 expression. Codeine treatment led to marked reduction in Bcl-2 expression. These findings are 
suggestive of codeine-induced apoptosis. (Photomicrographs are from our laboratory-published: [8]. E) Rohypnol treatment led to degeneration 
of seminiferous tubules (black circle) and germ cells (black arrow), with widened interstitial space. (Photomicrograph is from our laboratory-In 
Press, [9]. F) Methamphetamine caused degeneration of germ cells and reduced mature sperm cells in the tubular lumen (black circle). It also led 
to vascular congestion within the interstitial space (black arrow). (Photomicrograph is from our laboratory-unpublished)

(See figure on next page.)
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Fig. 4 (See legend on previous page.)
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