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Oestrogen-induced angiogenesis and
implantation contribute to the
development of parasitic myomas after
laparoscopic morcellation
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Abstract

Background: Iatrogenic parasitic myomas (PMs), caused by intra-corporeal power morcellation during laparoscopy
is gradually increasing. However, the pathogenesis and medical treatment of PMs remain largely unelucidated.

Methods: Laparoscopically-induced PM xenografted mouse model was conducted by xenografting human uterine
myoma fragments into the abdominal cavity of SCID mice and hormonal manipulation was performed using this
mouse model to demonstrate the role of oestrogen in the development of implanted PMs. Immunohistochemistry
of oestrogen receptor α (ERα), progesterone receptor (PR), vimentin, vascular endothelial growth factor (VEGF),
microvessel density (MVD) and Ki-67 index was performed and compared.

Results: In the patient with PMs, ERα, PR, angiogenesis and proliferative property expression were upregulated in
PM lesions compared to uterine myomas. In the laparoscopically-induced PM mouse model, implanted myomas had
more steroid receptor expressions, angiogenesis and proliferative property compared with pre-xenografted or non-
implanted myoma. Depletion of oestrogen in the ovariectomized (OVX) mice decreased laparoscopically-induced PM
implantations. In comparison, the implantations of PMs were increased with additional E2 supplement. Hormonal
manipulation in the PM mouse model, including AI, GnRHa and SERM groups, were compared and AI significantly
decreased the implantations, steroid receptor, angiogenesis, cell density, and proliferative index of PMs compared with
control group. Furthermore, GnRHa significantly decreased VEGF and MVD expressions compared with control group.

Conclusions: These data highlight the crucial role of oestrogen in the development of laparoscopically-induced PMs
and suggest that hormone manipulation may be a potential therapeutic agent.

Trial registration: This protocol was approved by the Human and Animal Institutional Review Board of Taipei Veterans
General Hospital (VGHIRB No 2014-10-002C on Nov. 17th, 2014; IACUC 2014-119 on Aug. 22nd, 2014).
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Background
Uterine myomas (UMs) are the most common gynaecolo-
gic tumours, occurring in 40–70 % of women over 30 years
of age [1]. For years, the only curative treatment for myo-
mas is considered to be surgery including hysterectomy
and myomectomy [2]. Laparoscopic procedures can be
performed with decreased morbidity compared with ex-
ploratory laparotomy [3]. Steiner et al. introduced the first
‘electrical cutting device’ for laparoscopic removal of tissue
from the abdominal cavity in 1993 [4]. However, power
morcellation is certainly associated with tissue spreading
per se resulting in intra-corporeal ectopic implants [5, 6].
The first case of a parasitic myoma (PM) after use of
the laparoscopic morcellation was reported in 1997 by
Ostrzenski [7]. With increasing frequency, laparoscopic
and robotic-assisted myomectomies/hysterectomies are
being performed in managing women with symptomatic
myomas [5], a number of case reports were published that
reported growth of PMs after morcellation.
The reported incidence of PMs after laparoscopic

myomectomy was 0.20–1.25 % [8, 9]. Patients with
PMs presented with multiple lesions and varying sizes
(range, 0.8–30 cm). PMs largely occurred in the dependent
part of the abdominal cavity, including intestines, periton-
eum, omentum and port sites, and received abundant blood
supply [8, 10–17]. Most women (78.3 %) presented with
symptoms, such as abdominal or pelvic pain, dyspareunia,
abdominal distension, abdominal pressure, urinary fre-
quency and constipation [13, 14, 17–23]. In 10.1 % patients,
debulking procedure, such as omentectomy, appendec-
tomy, or bowel resection, was necessary to eliminate all
PMs [18, 24, 25]. Thus, it is important to elucidate the
pathophysiology of laparoscopic morcellator-induced PMs.
UM growth is dependent on the sex steroid hormones,

oestrogen and progesterone [26]. Data from in vitro and
animal models over decades suggest that oestradiol (E2)
plays a central role in myoma growth via its receptor,
oestrogen receptor α (ERα) [27, 28]. Most medical
treatments reduce menstrual bleeding in patients with my-
oma, including gonadotrophin-releasing hormone agonist
(GnRHa), aromatase inhibitors (AI), selective oestrogen
receptor modulators (SERMs), progestins and selective
progesterone receptor modulators (SPRMs) [1, 29, 30].
However, only GnRHa, AI and SPRMs can reduce both
myoma volume and menstrual bleeding. Thus, it is
hypothesised that exposure to oestrogen and progesterone
could be a risk factor for the development of PMs [8, 31].
Until now, these evidences in managing PMs were based
on case reports and small case series, which most received
surgical treatment. Thus, the role of medical treatments for
laparoscopically-induced PM remains largely unelucidated.
Due to the implantation and growth behaviour of

PMs, we reasoned that oestrogen and angiogenesis
might be involved in the development of PMs. In the

present study, we simulated the laparoscopically-induced
PMs xenografted mouse model to demonstrate the role
of oestrogen-induced angiogenesis in the development
of laparoscopically-induced PMs. Furthermore, we inves-
tigate the therapeutic effects of hormonal manipulation
for PMs.

Methods
Study design
UMs of the proliferative phase were collected during myo-
mectomy or hysterectomy from 7 premenopausal women
with UMs without a history of using oral contraceptive or
other hormonal treatments within 3 months, and one pa-
tient presented with PM after laparoscopic myomectomy
(patients characteristics in Additional file 1: Table S1).
This protocol was approved by the Human and Animal
Institutional Review Board of Taipei Veterans General
Hospital (VGHIRB No 2014-10-002C; IACUC 2014-119).

Laparoscopically-induced PMs mouse model:
xenografting human UM fragments into abdominal cavity
of SCID mice
Firstly, five SCID mice without bilateral ovariectomy
(OVX) were xenografted with UM fragments obtained
from two patients (Case 2 and 3) (Additional file 1:
Table S1). Because uterine myoma is also known as an
oestrogen-dependent disorder, fresh UM samples were
fragmented into 1–2 mm diameter sections under sterile
conditions. The fragments were cultured in Dulbecco’s
Modified Eagle’s Medium (DMEM) +Ham’s F12 (1 : 1)
+10 % fetal bovine serum (FBS) supplemented with E2
(10−9 M) (Sigma-Aldrich, St. Louis, MO) for 4 h prior to
xenograft into 8-week-old NOD-SCID female mice [32,
33]. One 1-cm longitudinal incision at the lower abdo-
men of SCID mice was made and ten UM fragments
were implanted in the four quadrants of the peritoneal
cavity. Before the wound was totally closed, the pneumo-
peritoneum needle (Surgineedle™, Covidien, US) was
inserted into the abdominal cavity. The CO2 insufflation
pressure was 4 mmHg, and the duration of insufflation
was 10 min [34]. These mice were left untreated and
sacrificed in 3 weeks after the xenograft. Both implanted
and non-implanted fragments were harvested (xenograft
and insufflation procedures in Additional file 2: Figure
S1A & Additional file 3: Part 1).

E2 treatment and OVX in laparoscopically-induced PMs
model
Thirty SCID mice were equally grouped into OVX,
control and E2 groups and were xenografted with
UM fragments obtained from patient case 4 and 5
(Additional file 1: Table S1). Mice in OVX group re-
ceived bilateral OVX two weeks prior the xenograft
procedure (Additional file 2: Figure S1B). The others
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in control and E2 groups received the xenograft procedure
without bilateral OVX. Mice in OVX (n = 10) and control
(n = 10) groups were treated subcutaneously (S.C.) (100 μl,
0.9 % saline per week); mice in E2 group (n = 10) were
treated with E2 S.C. per week (2.5 μg/ml estradiol in
100 μl 0.9 % saline, 10 μg/kg body weight; Sigma-Aldrich,
US) [35]. The serum E2 levels were assayed at week 0 (just
before the xenograft procedure and E2 treatment) and
week 3 (just before sacrifice) (Additional file 3: Part 2).
Laparotomic examination was performed and these mice
were sacrificed 3 weeks after the xenograft procedures.

Hormonal manipulation of laparoscopically-induced PM
mouse model
Forty-eight mice xenografted with mixed UM fragments
from patient case 6 and 7 (Additional file 1: Table S1)
were equally grouped in to four groups according to the
treatment protocols: control with 100 μl 0.9 % saline
S.C. per week (n = 12) [35], AI (Letrozole; Femara® were
prepared in 0.3 % hydroxypropylcellulose; mice were
injected S.C. five times per week with letrozole 10 μg
per mouse per day; Novartis, Switzerland) (n = 12) [36],
GnRHa (Leuprorelin acetate S.C. 10 mg/kg per week;
LEUPLIN®DEPOT 3.75 mg S.C. Injection, Takeda, Japan)
(n = 12) [37], and SERM (Raloxifene hydrochloride,
0.1 μg S.C. per day; Sigma-Aldrich, US) [32].
Laparotomic examination was performed and these mice

were sacrificed 3 weeks after the xenograft procedures.

Histological and immunohistochemistry (IHC) analysis
The hematoxylin and eosin (H&E) and IHC staining, in-
cluding ERα, PR, smooth muscle actin (SMA), Ki-67,
vimentin, VEGF, and CD34, were performed and anti-
body characteristics are listed in the Additional file 1:
Table S2. The H&E and IHC slides were independently
examined by two observers. The cell density was deter-
mined on H&E sections and the immunohistochemical
scores (IHS) was utilised based on the German Immuno-
Reactive score (Additional file 3: Part 3).

Statistical analysis
Pearson χ2 or Fisher’s exact tests were used for compari-
son of dichotomous variables. The independent Student’s
t -test or analysis of variance was used to compare the
continuous variables between groups. All other data was
analysed using the software SPSS (version 21; IBM Inc.)

Results
Case report: PMs possessed more ERα, PR and
angiogenesis expressions compared with in situ UM
One 44-year-old female, G2P2, having a history of laparo-
scopic myomectomy with power morcellator 5 years ago,
presented with chronic pelvic pain and one palpable left
lower abdominal mass. The MRI image demonstrated with

three soft tissue masses at previous trocar sites of the
abdominal wall and laparoscopically-induced PMs was
impressed (Fig. 1a). Laparotomic total hysterectomy and re-
section of abdominal wall lesions were performed (Fig. 1b).
The pathological report of PMs disclosed benign UMs
without atypia. Compared with in situ UM, PMs possessed
more cellularity and Ki-67 index and more ERα, PR, vimen-
tin, VEGF and CD34 expressions (IHS presented in Fig. 1c
& Additional file 4: Figure S2).

Sex steroid receptors and angiogenesis markers are
associated with implantation of laparoscopically-induced
PMs
We first investigated whether overexpression of sex ster-
oid receptors (ERα and PR), angiogenesis and proliferative
property occurred in PMs’ lesions. In the laparoscopically-
induced PM mouse model, the mean implanted lesions
were 2.2 (number: 0–3) and non-implanted was 2.6
(number: 2–4) per mouse (Fig. 2a and b).
Compared with pre-xenografted myomas and non-

implanted myomas, the implanted myomas possessed
more expressions of cell density, ERα, PR, vimentin,
VEGF, MVD, and Ki-67 labeling index (Fig. 2c–j). In
addition, the expression of SMA was similar in the
groups of pre-xenografted and implanted myomas but
decreased in non-implanted myomas. Thus, similar
SMA expressions in the groups of pre-xenografted and
implanted myomas confirmed the establishment of PM
growth in this laparoscopically-induced PM mouse
model which were presented from the patient with PMs
and in situ UM as well (Additional file 5: Figure S3;
Additional file 1: Table S3).
In conclusion, implanted myomas had more cellularity,

sex steroid receptor expressions, angiogenesis and prolif-
erative property compared with pre-xenografted or non-
implanted myomas.

Depletion of oestrogen decreased laparoscopically-induced
PM implantations
Then we investigated whether the implantations of PM
lesions correlated with serum E2 levels. At week 3, sacri-
ficed OVX group mice had significantly less implantations
and weight per mouse compared with control group. By
comparison, mice in E2 group had more total implant-
ation numbers and weight compared with control group
(Fig. 3b–e). At Week 0, E2 levels of OVX group were sig-
nificantly lower compared with control group, while no
statistical difference between control and E2 groups. At
Week 3, significantly higher E2 levels of E2 group were
demonstrated (Fig. 3f).
The harvested implanted myomas of OVX group pos-

sessed lower cellularity, ERα, PR, Ki-67, vimentin and
MVD expressions than those of control group. By con-
trary, cellularity, ERα, PR, Ki-67, vimentin and MVD
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expressions significantly increased in the E2 group
(Fig. 4a–e & IHS listed in Additional file 1: Table S4).
This result demonstrated that additional E2 increased

the implantations, sex steroid receptor expressions, pro-
liferation and angiogenesis while depletion of oestrogen
had contrary results.

Hormonal manipulation in laparoscopically-induced PM
mouse model
Finally, we tested and analysed if the hormonal manipula-
tion could inhibit establishment of PM lesions. After 3-
week treatment with three different ligands, AI significantly
decreased the implantation numbers and implantation

weight compared with control group (Fig. 5a and b). The
expressions of cellularity, ERα, PR, vimentin, VEGF, MVD,
and Ki67 index were also significantly decreased in AI treat-
ment group (Fig. 6a–e & Additional file 5: Figure S3). In
addition, GnRHa significantly inhibited the angiogenesis ex-
pressions (VEGF and MVD). However, both GnRHa and
SERM lowered the implantations, weight of implantation,
and Ki-67 labeling index while these results were not sig-
nificant (Fig. 6a–e & Additional file 1: Table S5).

Discussion
Until now, the treatment and prevention of laparoscopically-
induced PMs are still challenges for clinical physicians. In

Fig. 1 PMs presented with more cellularity, sex steroid receptors, proliferative property and angiogenesis expressions compared with UMs. a The
imaging study of magnetic resonance imaging (MRI). (Left) one PM (white arrow) located at the level between peritoneum and fascia transversalis
at right lower abdominal wall and another PM (yellow arrow) located at left lower abdominal wall on post-Gadolinium T1 weighted image. (Right)
one UM (yellow arrow) located at left uterine wall on post-Gadolinium image. b Resection of PMs. (Left) One PM, 5*4 cm, (yellow arrow) located at
previous trocar site; (Right) one 2*2 cm PM (white arrow) at sub-umbilicus for laparoscopy. c Staining for H&E, and IHC for ERα, PR, SMA, Ki67, vimentin,
VEGF and CD34. Original magnification: ×400; the scale bars represent 400 μm. UM= uterine myoma, PM= parasitic myoma, ERα = oestrogen receptor
α, PR = progesterone receptor, SMA = smooth muscle actin, VEGF = vascular epithelial growth factor
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this study, we employed a new animal model to exam-
ine the role of oestrogen in laparoscopically-induced
PMs. First, implanted myomas possessed more ERα,
PR, angiogenesis and proliferative property compared
with pre-xenografted or non-implanted myomas.
Second, depletion of oestrogen significantly decreased
laparoscopically-induced PM implantations. The im-
plantations, angiogenesis, and proliferative property of
PMs were associated with the serum E2 levels. Third,
sex steroid hormone modulator, AI, decreased the im-
plantations, angiogenesis, and proliferative property. To

our knowledge, this is the first report to demonstrate
the involvement of oestrogen-induced angiogenesis in
the development of PMs. These data highlighted the
crucial role of oestrogen-induced angiogenesis and im-
plantations in the development of PMs, and hormonal
manipulation with AI might be potential remedies in
preventing laparoscopically-induced PMs.
Research of UMs is still challenged by the need for in

vivo models. Until now, the laparoscopically-induced
PMs in vivo model is lacking. At present, the commonly
used transplantation model for myomas is the ELT3 cell

Fig. 2 Implanted myomas presented with higher ERα, PR, vimentin, VEGF and MVD compared with pre-xenografted myoma and non-implanted
myoma. a Implanted and non-implanted myoma fragments at sacrifice 3 weeks later. Yellow arrows indicate implanted myoma; white arrows indicate non-
implanted myoma. b Implantations and non-implantations in each mouse at sacrifice. 3 of 5 SCID mice developed implanted uterine myoma. c H&E, and
IHC stainings for ERα, PR, Ki67, vimentin, VEGF, and CD34. Original magnification: ×400; the scale bars represent 400 μm. d–j IHS of three groups. Implanted
myoma presented with higher ERα, PR, VEGF, MVD cell density and Ki-67 expressions compared with pre-xenografted uterine myoma and non-implanted
myoma. UM=pre-xenografted uterine myoma, MVD=microvessel density, Imp = implanted, Non-imp = non-implanted, *P< 0.05
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injection model. Owing to a germ-line mutation of the
tuberous sclerosis gene 2 (Tsc2), Eker rats spontaneously
develop various neoplasms, including leiomyosarcoma
[38–40]. Nonetheless, the Tsc2-driven tumour develop-
ment might not reflect the sporadic pathogenesis of my-
omas. An alternative model described by Hassan et al.
[41], who provoked growth of myoma-like xenograft im-
planted subcutaneously in SCID mice, by transplanting
human tumour tissue pieces overexpressing COX2 (cyclo-
oxygenase 2) and VEGF through adenoviral transduction.
However, that model exhibits substantial limitations be-
cause it is driven by the ectopic overexpression of COX2

[42–44]. In recently, Drosch et al. report an approach by
generating a myoma xenograft model through injection of
human myoma–derived primary cells without genetic ma-
nipulation into myometrium of mice [45]. According to
Drosch’s report, primary myoma cells are suited to gener-
ate fibroid-like xenografts for studying pathogenesis with-
out genetic modifications [45]. Furthermore, one single
stem cell is thought to give birth to a specific myoma
(which is why it is called a clonal disease) [46]. Thus, it is
reasonable that human UM xenografts are suited to gen-
erate PMs-like xenografts model without genetic modifi-
cations. For the first time, we could demonstrate this

Fig. 3 Oestradiol (E2) increased implantation numbers and implantation weight per mouse and depletion of oestrogen had contrary results. a
Xenograft and insufflation procedures. b and c Flow chart and representative pictures of the xenografted PM mouse model. Mice were sacrificed
in 3 weeks after xenograft procedures. d and e Compared with control group, there were fewer implantations and weight of implantations in the
OVX group, while there were more implantations and weight of implantations in the E2 group. f E2 levels of control, OVX and E2 groups at Week
0 and 3. Implantations/mouse stands for implanted uterine myoma numbers per mouse at sacrifice; implantation weight (mg) stands for the total
weight of implanted uterine myoma per mouse (* P < 0.05)
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laparoscopically-induced PMs and setup a pneumoperito-
neum system in SCID mice. SCID mice possess a combined
congenital deficiency in T- and B-lymphocyte function, and
cannot reject transplanted non-autologous tissues [32, 47].
Those tumours closely mimicked laparoscopically-induced
PMs by their highly similar histology and growth character-
istics. The xenografted tissues can be used to simulate as-
pects of the myoma-host microenvironment during the
pathogenesis of PMs. Moreover, using different donors
would also enhance the interpatient variability. Aside from

these restrictions, the described model provides a powerful
tool for basic research to investigate the pathogenesis of
PMs, because this model omits any genetic modifications
and closely resembles the pathogenesis of laparoscopically-
induced PMs. This model can be used as a powerful tool to
study mechanisms involved in the pathogenesis of
laparoscopically-induced PMs and will open new opportun-
ities for their treatment.
Although quite a lot is known about the factors con-

tributing to myoma growth, the pathophysiology of PMs

Fig. 4 E2 was associated with increasing cell density, ERα, PR, cytoskeletal proteins and angiogenesis expressions in the xenografted mice model.
a Staining for H&E, and IHC for ERα, PR, Ki67, vimentin, VEGF, and CD34 of implanted myoma in the three groups (Control, OVX and E2 groups).
Original magnification: ×400; the scale bars represent 400 μm; b IHS of the samples of implanted myoma. c–e Compared with Control group,
there were less MVD, cell density and Ki-67 index in the OVX group (*P < 0.05), while there were more MVD, cell density and Ki-67 index in the E2
group (* P < 0.05). OXV = ovariectomy. **P < 0.01
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remains largely unelucidated [1]. Traditionally, PMs were
supposed to be pedunculated subserosal myomas that
were accidentally separated from the uterus, and subse-
quently attached to other organs in the pelvis for the
provision of their blood supply [48]. Since the published
case reports of PM after laparoscopic myomectomy, it was
hypothesised that iatrogenic PMs could develop by seed-
ing of retained small tissue fragments with stem cell after
morcellation in the peritoneal cavity [22, 49]. Our result
showed that implanted xenografts similar to primary UM
histologically. Xenografts showed features of UM-like fusi-
form cells: a whirl-like pattern of the smooth muscle bun-
dles and cigar-shaped nuclei determined by histology
(Fig. 2c). In addition, SMA showed a strong abundance in
the implanted xenografts and in the primary tumours
(Additional file 5: Figure S3), confirming the smooth
muscle differentiation of the xenografts. According to our
case report and animal model, angiogenesis and cell pro-
liferation increased in implanted xenografted myoma
compared with primary or non-implanted xenografted
myoma. Of note, Ishikawa et al. showed that the growth

of tissue xenografts was strongly dependent on the cell
density of the xenografts [22]. Hassan et al. showed
VEGF provoked growth of myoma-like xenografts
implanted subcutaneously in SCID mice [41]. VEGF-
enhanced angiogenesis is also associated with an
increase in vascular permeability, which results in an
increase in the amount of growth factors and nutrients
delivered to tumour cells [44, 50]. Thus, implantation,
angiogenesis and cell proliferation are the important
mechanisms for laparoscopically-induced PM growth.
UM are oestrogen- and progesterone-dependent

monoclonal tumours that arise from the uterine smooth
muscle tissue [51]. Data from in vitro and nonhuman
animal models over decades suggest that E2 plays a cen-
tral role in myoma growth via its receptor, ERα [28, 46].
Furthermore, the impact of sex hormones on the PM
growth was illustrated by cases of rapid growth of PMs
during pregnancy. Cucinella et al. [8] report a case of a
woman where an asymptomatic PM was discovered dur-
ing a cesarean section, 24 months after the procedure of
laparoscopic myomectomy. Takeda et al. [52] published

Fig. 5 Therapeutic effects of sex hormone modulators in the laparoscopically-induced PM mouse model. a Flow chart and representative pictures
of the laparoscopically-induced PM mouse model and sex hormone manipulations- Control, AI, GnRHa, and SERM. Yellow arrows indicated implanted
myoma. White box indicates non-implanted myoma. b and c Average implantations per mouse and implantation weight per mouse in each group.
Compared with control group, AI significantly decreased the implantations and implantation weight per mouse. *P < 0.05
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a case report of a woman who was diagnosed with a PM
2 years after the procedure of laparoscopic myomec-
tomy. After 2 years of conservative treatment, the size of
the mass remained the same, yet during pregnancy, the
rapid growth of this mass was observed, supporting the
sex hormonal impact on the growth of PM. In our study,
the non-implanted myoma fragments disclosed de-
creased expressions of both ERα and PR compared with
implanted lesions, and this result suggested the dissemi-
nated fragments with strong positive ERα and PR might
be essential in the development of PM implantations.
Our study also demonstrated that depletion of oestrogen
decreased the angiogenesis, proliferation and implanta-
tions, and the result was correlated with previous studies

which demonstrated shrinkage of benign metastatic leio-
myomatosis after bilateral salpingo-oophorectomy (BSO)
surgery [53–56]. The duration of sex steroid hormone ex-
posure after laparoscopic morcellation might also be a risk
factor for the development of PMs [26]. According to the
systematic review, 69 cases PMs after laparoscopic myo-
mectomy by Meulen et al., it is hypothesised that prolonged
exposure to sex steroid hormones such as hormonal re-
placement therapy, could be a risk factor for the develop-
ment of PMs [8, 16, 23, 31, 57]. Our present study
highlighted the crucial role of E2 and ERα and PR expres-
sions in the development of laparoscopically-induced PMs.
To prevent PMs, it is important not to disperse tissue

fragments during intra-corporeal power morcellation

Fig. 6 Results of H&E and IHC of the 4 groups (Control, AI, GnRHa, and SERM groups). a H&E and IHC stainings for ERα, PR, Ki67, vimentin, VEGF,
and CD34 of the samples of implanted myoma. Original magnification: ×400; the scale bars represent 400 μm. b AI significantly decreased expressions
of ERα, PR, and vimentin. c AI and GnRHa inhibited the angiogenesis (VEGF expression and MVD). d and e Cell density and Ki-67 index were decreased
in AI group. *P < 0.05, **P < 0.01

Huang et al. Reproductive Biology and Endocrinology  (2016) 14:64 Page 9 of 12



and to inspect all the surgical fields during laparoscopy
with caution [58, 59]. Until now, no effective method to
prevent tissue dispersion from power morcellation has
been established [60–62]. Most patients with symptom-
atic PMs after laparoscopic surgeries at their reproduct-
ive age, and BSO might not be indicated in all patients
for the purpose of prevention of PMs [63, 64]. Thus it is
necessary to find medical prevention and treatment for
those patients. Leiomyomatosis peritonealis disseminata
(LPD) is a disease that is characterised by the presence
of many (sub-) peritoneal smooth-muscle nodules dis-
seminated through the omentum and peritoneum. The
nodules are thought to originate from metaplasia of sub-
peritoneal mesenchymal stem cells without a history of
laparoscopic myomectomy. Although LPD is a different
entity when compared with UMs, there might be a rela-
tion between morcellation of UMs and an iatrogenic
development of this disease. Several studies which pre-
sented that LPD shrink under sex steroid hormone
manipulation, including BSO [53–55], menopause [65],
megestrol [66], SERM [55], AI [55, 67], and GnRHa [55,
56, 68]. Laparoscopic myomectomy might result in the
growth of multiple PM nodules mimicking LPD [31].
Thus it is reasonable to test the prevention and thera-
peutic effect of sex hormone manipulation on PMs after
laparoscopic surgery.
Our xenografted mouse model demonstrated that AI

significantly decreased the implantations rate and weight
of implantations, while GnRHa and SERM did not
change the implantation rate.
Aromatase is a cytochrome P450 enzyme (CYP-19) that

allows the transformation of androgens into oestrogens.
AIs are compounds that interact with the hormone-binding
site of the molecule (exemestane) or with its catalytic sub-
unit (anastrozole, letrozole). This is supported mostly by
clinical data showing that AIs are as effective as GnRH ana-
logues in reducing myoma volume in premenopausal
women. Letrozole reduces fibroid volumes by 46 % (vs.
32 % in the GnRH analogue group) [69]. In peripheral tis-
sues, including skin and adipose tissue, and the ovaries, aro-
matase catalyses the formation of oestrogen, which reaches
UM tissue through the circulation. In addition, aromatase
in myoma tissue converts androstenedione of adrenal or
ovarian origin to oestrogen locally [70]. This is possible rea-
son AI is more effect than GnRHa in our study.
After binding to the GnRH receptors, GnRHa induces

subsequent stimulation of gonadotropin secretion followed
by desensitisation, and thus they delay the gonadotropic
axis blockade. In vitro, GnRHa inhibits cell proliferation
and induces apoptosis [71]. Even though, GnRHa is the
most effective agent to correct anaemia, and reduce fibroid
volume by 50 % after 2–3 months treatment [1, 2]. How-
ever, in our study, GnRHa did not reach the comparable
results with AI and SPRM in lowering uterine myoma

implantations. The possible reason was that because
GnRHa takes approximately 1–3 weeks to obtain a fully
hypogonadotropic hypogonadal state to decrease serum E2
level [72, 73], while we sacrificed mice only after 3 weeks
GnRHa treatment. Thus, further study of the suitable tim-
ing of GnRHa treatment for PMs is needed.
SERMs are nonsteroidal oestrogen receptor ligands

with agonist or antagonist effects depending on the tis-
sue. Raloxifene (SERM) has been approved for the
treatment and prevention of post-menopausal osteo-
porosis [74]. Three randomised controlled trials have
evaluated raloxifene in premenopausal women with
confirmed UMs [75]. Two of these trials, including 215
women, showed the therapeutic efficacy of raloxifene,
but the third did not. This may be due to the rise in E2
secretion observed in premenopausal women following
SERM treatment. There was no therapeutic effect on
PMs in our study.
Our study had some limitations, including lack of

long-term follow-up of treatment of different ligands,
and lack of serum hormone level changes of progester-
one. In addition, we did not examine the expression of
the somatic mutations in the mediator complex subunit
12 (MED12) gene which might be associated with 50 %
of UM [76].

Conclusions
Until now, there is still no effective method to treat
and prevent PMs after laparoscopic power morcella-
tion. The identification of tumourigenic factors will
give insights into the pathogenesis of UMs and might
open new possibilities for drug testing. Based on the
present study, PMs are oestrogen-dependent and AI
might be potential remedies to prevent PMs after lap-
aroscopic procedures.
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