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Abstract

Background: hCG is a term referring to 4 independent molecules, each produced by separate cells and each
having completely separate functions. These are hCG produced by villous syncytiotrophoblast cells,
hyperglycosylated hCG produced by cytotrophoblast cells, free beta-subunit made by multiple primary non-
trophoblastic malignancies, and pituitary hCG made by the gonadotrope cells of the anterior pituitary.

Results and discussion: hCG has numerous functions. hCG promotes progesterone production by corpus luteal
cells; promotes angiogenesis in uterine vasculature; promoted the fusion of cytotrophoblast cell and differentiation
to make syncytiotrophoblast cells; causes the blockage of any immune or macrophage action by mother on
foreign invading placental cells; causes uterine growth parallel to fetal growth; suppresses any myometrial
contractions during the course of pregnancy; causes growth and differentiation of the umbilical cord; signals the
endometrium about forthcoming implantation; acts on receptor in mother’s brain causing hyperemesis gravidarum,
and seemingly promotes growth of fetal organs during pregnancy.
Hyperglycosylated hCG functions to promote growth of cytotrophoblast cells and invasion by these cells, as occurs
in implantation of pregnancy, and growth and invasion by choriocarcinoma cells. hCG free beta-subunit is pro-
duced by numerous non-trophoblastic malignancies of different primaries. The detection of free beta-subunit in
these malignancies is generally considered a sign of poor prognosis. The free beta-subunit blocks apoptosis in
cancer cells and promotes the growth and malignancy of the cancer. Pituitary hCG is a sulfated variant of hCG
produced at low levels during the menstrual cycle. Pituitary hCG seems to mimic luteinizing hormone actions
during the menstrual cycle.

Introduction
It is difficult to say who specifically was the discoverer
of the hormone we call hCG. In 1912, Aschner stimu-
lated the genital tract of guinea pigs with injections of a
water-soluble extracts of human placenta [1]. In 1913,
Fellner induced ovulation in immature rabbits with a
saline extracts of human placenta [2]. In 1919, Hirose
stimulated ovulation and normal luteal function in
immature rabbits by repeated injection of human pla-
cental tissue [3]. All of these works show that there was
a clear hormonal link between the placenta and the
uterus [1-3]. In 1927, Ascheim and Zondek demon-
strated that pregnant women produce a gonad-stimulat-
ing substance [4]. They showed that injecting this
substance into intact immature female mice let to

follicular maturation, ovulation, and hemorrhaging into
the ovarian stroma. Around this time, the name human
chorionic gonadotropin (hCG) was conceived: Chorion
comes from latin chordata meaning afterbirth; gonado-
tropin because the hormone is a gonad tropic molecule,
acting on the ovaries, promoting steroid production.
As we know today, hCG is a hormone comprising an

a-subunit and a b-subunit which are held together by
non-covalent hydrophobic and ionic interactions. The
molecular weight of hCG is approximately 36,000. It is
an unusual molecule in that 25-41% of the molecular
weight is derived from the sugar side-chains (25-30% in
regular hCG and 35-41% in hyperglycosylated hCG).
Today, the function of hCG is still marked as being pro-
gesterone promotion in most medical student text
books, but we now know now that hCG has numerous
other important placental, uterine and fetal functions in
pregnancy. From the time of implantation, hCG
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produced by trophoblast cells take over corpus luteal
progesterone production rom luteinizing hormone (LH),
acting on a joint hCG/LH receptor. This continues for
approximately 3 to 4 weeks. After that time, there are
sufficient syncytiotrophoblast cells in the placenta to
take over progesterone production from corpus luteal
cells.
Research now shows that there are at least 4 indepen-

dent variants of hCG, each produced by different cells
with separate biological functions. All the molecules
share a common hCGb-subunit amino acid sequence.
There is hCG, produced by differentiated syncytiotro-
phoblast cells or more specifically villous syncytiotro-
phoblast cells as pregnancy progresses [5-7]. This is the
molecules that promotes progesterone production by
ovarian corpus luteal cells and has multiple other biolo-
gical functions as described below. Hyperglycosylated
hCG is a sugar variant of hCG made by root cytotro-
phoblast cells or extravillous cytotrophoblast cells as
pregnancy progresses [6,7]. Hyperglycosylated hCG is
not a hormone but is an autocrine, acting on cytotro-
phoblast cells to promote cell growth and invasion as in
implantation of pregnancy and invasion by choriocarci-
noma cells [8,9]. Free b-subunit is the alternatively
glycosylated monomeric variant of hCG made by all
non-trophoblastic advanced malignancies [10]. Free b-
subunit promotes growth and malignancy of advanced
cancers [11,12]. A fourth variant of hCG is pituitary
hCG, produced during the female menstrual cycle. This
molecules has sulfated rather than sialylated oligosac-
charides. Pituitary hCG functions in an LH-like manner
to promote follicular maturation, stigma formation and
meiosis in the primary follicle, ovulation, luteinization of
the follicle, and progesterone production during the
menstrual cycle [13,14]. The biological activities of all 4
variants of hCG and the actions of the hCG/LH recep-
tor are carefully investigated in this review.
The serum and urine concentration of hCG and

hyperglycosylated hCG during pregnancy are investi-
gated in this comprehensive review. The extreme varia-
tions of hCG and hyperglycosylated hCG concentration
are examined and how the extreme concentrations are
managed by the hCG/LH receptor are investigated. hCG
binds a common receptor with LH, the LH/hCG recep-
tor. The specificity of the receptor and mechanism of
receptor action are also considered in this review.

Biological function of hCG
The hormone hCG comprises an a-subunit and a b-
subunit. The a-subunit is common to hCG, to the auto-
crine/paracrine hyperglycosylated hCG, to the hormone
pituitary hCG, and to the hormones LH, follicle stimu-
lating hormone (FSH), and thyroid stimulating hormone
(TSH), and to the common free a-subunit formed in

excess. The b-subunit of hCG, while structurally some-
what similar to the b-subunit of LH, differentiates hCG,
hyperglycosylated hCG, and pituitary hCG from other
molecules. Both hCG and LH bind and function
through a common hCG/LH receptor. The biggest dif-
ference between LH and hCG is that LH, pI 8.0, has a
circulating half-life of just 25-30 minutes [15], while
hCG, pI 3.5, has a circulating half-life of approximately
37 hours [16], or 80-fold longer than that of LH. In
many respects hCG is a super LH produced in preg-
nancy, with 80X the biological activity of LH, yet acting
on the joint receptor. While LH, FSH and TSH are
made by the anterior lobe of the pituitary, hCG is pro-
duced by fused and differentiated placental syncytiotro-
phoblast cells [6].
The original biological activity of hCG was first

revealed in the nineteen twenties and confirmed and
elaborated in the years that followed [1-4,17-23]. With
pregnancy, hCG takes over from LH in promoting pro-
gesterone production by ovarian corpus luteal cells, pre-
venting menstrual bleeding (Table 1). As we know
today, hCG only promotes progesterone production for
3-4 weeks following pregnancy implantation. This func-
tion is active for approximately 10% of the length of
pregnancy. As shown in Tables 2 and 3 hCG reaches a
peak at 10 weeks of gestation, or almost one month
after progesterone promotion is complete, then con-
tinues to be produced through the length of pregnancy.
Clearly, progesterone production is not the principal
purpose of hCG. As illustrated in Table 1, hCG has
been shown in recent years to have numerous functions
in the placenta, uterus and possible in the fetus during
pregnancy.
The research groups of Rao et al., Zygmunt et al., and

Noel et al., have each shown that hCG also functions to
promote angiogenesis and vasculogenesis in the uterine
vasculature during pregnancy. This insures maximal
blood supply to the invading placenta and optimal nutri-
tion to the fetus [24-30] (Table 1). The hCG/LH recep-
tor gene is expressed by uterine spiral arteries, and hCG
acts on them to promote angiogenesis. This is probably
a major function of hCG during the course of pregnancy
insuring adequate blood supply or nutrition to the pla-
centa. hCG also has an important function at the pla-
centa trophoblast tissue level promoting the fusion of
cytotrophoblast cells and their differentiation to syncy-
tiotrophoblast cells [31,32] (Table 1). Testicular gem cell
cancers take on trophoblast cytology. hCG may function
similarly to promote differentiation of testicular cancer
cytotrophoblast cell.
Four independent research groups showed that hCG

promotes an anti-macrophage inhibitory factor or a
macrophage migration inhibitory factor, a cytokine that
modulates the immune response during pregnancy,
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which reduces macrophage phagocytosis activity at the
placenta-uterine interface, preventing destruction of for-
eign fetoplacental tissue [33-35] (Table 1). Three other
groups have shown that hCG may directly suppress any
immune action against the invading foreign tissue
[36-38]. All told, hCG appears to be one of the numer-
ous factors acting to prevent rejection of the fetoplacen-
tal tissue. Most observations suggest that hCG has an
inhibitory or suppressive function on macrophage

activity. One group, Wan et al. [35] demonstrated that
hCG can directly enhance innate immunity by stimulat-
ing macrophage function.
Multiple groups have found hCG/LH receptor in the

myometrium of the uterus. It has been indicated by two
groups that uterine growth in line with fetal growth may
be stimulated by hCG, so that the uterus expands with
fetal size during pregnancy [39,40] (Table 1). Four
groups have shown that hCG relaxes myometrial

Table 1 The biological functions of the isoforms of hCG.

Function References

A. hCG

1. Promotion of corpus luteal progesterone production [1-4,17-23]

2. Angiogenesis of uterine vasculature [24-30]

3. Cytotrophoblast differentiation [31]

4. Immuno-suppression and blockage of phagocytosis of invading trophoblast cells [32-38]

5. Growth of uterus in line with fetal growth [39,40]

6. Quiescence of uterine muscle contraction [39,41-43]

7. Promotion of growth and differentiation of fetal organs [44-49]

8. Umbilical cord growth and development [51-53]

9. Blastocysts signals endometrium prior to implantation [54-56]

10. hCG in sperm and receptors found in fallopian tubes suggesting pre-pregnancy communication [57-60]

11. hCG receptors in adult brain hippocampus, hypothalamus and brain stem, may cause pregnancy nausea and vomiting [61,62]

12. hCG and implantation of pregnancy, hCG stimulates metalloproteinases of cytotrophoblast cell. [64-67]

B. Hyperglycosylated hCG

1. Stimulates implantation by invasion of cytotrophoblast cells as occurs at implantation of pregnancy, blocks apoptosis and growth
and malignancy of choriocarcinoma cells.

[8,9,71,74]

2. Stimulates growth of placenta and malignant placenta by promoting growth of cytotrophoblast cells [9,74]

C. Free b-subunit
1. Blockage of apoptosis in no-trophoblastic malignancies, promotion of growth and malignancy [83,85,91-95]

D. Pituitary hCG

1. Seemingly mimics LH functions, promoting follicular growth, meiosis, stigma formation, ovulation, luteogenesis and promoting
progesterone production.

[121,122]

Table 2 Concentration of total hCG and hyperglycosylated hCG (hCG-H) in 496 serum samples from 310 women with
term pregnancies measured using the Siemens Immulite 1000 total hCG assay.

Gestation age (weeks since start of
menstrual period)

N Median Total
hCG ng/ml

Range Total
hCG ng/ml (variation)

Median HCG-H
ng/ml

Range hCG-H ng/ml
(variation)

hCG-
H %

3-weeks-3-weeks 6-days n = 42 0.26 (16 of 42
<0.1 ng/ml)

0.04 - 5.5 0.20 (16 of 42
<0.1 ng/ml)

0.01 - 6.45 87%

4 weeks-4 weeks 6-days n = 42 3.4 0.21 - 173 (824X) 2.5 0.18 - 160 (888X) 51%

5 weeks-5-weeks 6-days n = 67 65 1.86 - 1308 (704X) 8.6 0.96 - 698 (731X) 43%

6-weeks-6-weeks 6-days n = 29 252 3.80 - 855 (225X) 86 0.76 - 629 (827X) 36%

7 weeks-7 weeks 6-days n = 30 3,278 203 - 7,766 (38X) 359 27 - 931 (34X) 16%

8 weeks-8 weeks 6-days n = 33 4,331 1,064 - 10,057 (9.4X) 386 67 - 1050 (15.6X) 7.0%

9 weeks-9 weeks 6-days n = 24 5,832 1,031 - 11,586 (11.2X) 430 102 - 1158 (11.3X) 5.1%

10 weeks-10 weeks 6-days n = 20 10,352 1,952 - 19,958 (10.2X) 521 188 - 1855 (9.9X) 4.3%

11 weeks-13-weeks 6-days n = 41 5,953 1,440 - 15,318 (10.6X) 137 24 - 330 (13.7X) 2.3%

14 weeks-17 weeks 6-days n = 57 2,934 311 - 4,757 (15.2X) 26 6.7 - 129 (19.3X) 1.3%

18 weeks-26-weeks 6-days n = 62 1,931 210 - 6,223 (30.3X) 15.8 5.3 - 95 (17.9X) 0.65%

27 weeks-40 weeks 6-days n = 49 1,911 184 - 8,530 (46.4X) 2.95 0.3 - 12.2 (40.6X) 0.14%

Data from 50 pregnancies that failed due to miscarriage were excluded from this table. Pregnancies which failed to implant in early pregnancy (total hCG <0.1
ng/ml) are indicated in parenthesis.
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contractions during the course of pregnancy. hCG acts
on a BK-Ca calcium activated channel to relax to myo-
metrium during the course of pregnancy [39,41-43].
hCG levels drop during the final weeks of pregnancy. It
has been suggested that this drop may be the cause of
increased contractions in the weeks prior to delivery.
Exciting new research is finding hCG/LH receptors in

fetal organs. Goldsmith et al. [44], have found hCG/LH
receptors in the fetal kidney and liver. Rao et al. [45-49],
have located hCG/LH receptors in the lung, liver, kid-
neys, spleen, and small and large intestines. Interest-
ingly, this hCG/LH receptor is present in the fetal
organs but completely absent in the adult organs. It is
suggested that hCG may promote organ growth and dif-
ferentiation in the fetus. The human fetus might pro-
duce its own hCG from the kidneys and liver [44,50].
The concentrations of hCG in the fetal circulation, how-
ever, are much lower than maternal concentrations, sug-
gesting that placental hCG secretion is directed towards
the maternal circulation and it is prevented from enter-
ing into fetal circulation [50]. While hCG/LH receptor
has been shown in fetal organs, no function has been
directly demonstrated, just indicated by the presence of
receptor. As such, all the findings regarding the fetus
have to be considered as just suggestions at this time.
Unfortunately, all animals except advanced primates do
not make a form of hCG, making the role of hCG in
the fetus difficult to confirm.
hCG has also been shown to function in umbilical

cord growth and development [51,52]. It is interesting
that hCG and hyperglycosylated hCG work together to
promote the growth (growth of root cytotrophoblast
cells, hyperglycosylated hCG) and differentiation (pro-
moted by hCG) of the placenta, and promotion of the
uterine blood supply to meet the invading placenta

(promoted by hCG). The next step is the development
of the umbilical cord and circulation. This is also see-
mingly promoted by hCG, suggesting hCG and hyper-
glycosylated hCG involvement in multiple steps of
placentation and fetal development [44-49,51-53].
Multiple publications suggest a signaling occurs

between the unimplanted blastocyst and the decidua tis-
sue [54-57]. Four independent reports show that the blas-
tocyst preimplantation secretes hCG into the uterine
space which is taken up by hCG/LH receptors on the
endometrial surface (Table 1). In response, the endome-
trium is prepared for an impending implantation [54-57].
These non-vascular communications by hCG are a criti-
cal part of successful pregnancy. Recent studies show the
importance of a receptive endometrium and of hCG pre-
implantation signaling in a successful pregnancy [58-60].
hCG signaling directly causes immunotolerance and
angiogenesis at the maternal fetal interface. hCG
increases the number of uterine natural killer cells that
play a key role in the establishment of pregnancy [58-60].
Other new data shows other pre-pregnancy implantation

function of hCG. Publications from Rao et al. [61-63] and
by Gawronska et al. [63], shows the presence of an hCG/
LH receptor (shown by presence of mRNA and demon-
stration of receptor action) in human sperm and in the
fallopian tubes (Table 1). The function of the hCG/LH
receptor in sperm is unclear. It possibly has some relation-
ship to fertility. The hCG/LH receptor in the fallopian
tubes may be that which is acted on by LH, which relaxes
the fallopian tube for fertilization to take place.
It has long been speculated that hCG may have a role

in implantation of pregnancy [64-67]. Publications sug-
gest an autocrine or paracrine function of hCG in
implantation of pregnancy. hCG of implantation is see-
mingly produced by cytotropblast cells. However, hCG

Table 3 Concentration of total hCG and in 4246 urine samples from 574 women having term pregnancies measured
using the Siemens Immulite 1000 total hCG assay.

Gestation age (weeks since start of menstrual period) N Median Total
hCG ng/ml

Range Total
hCG ng/ml (variation)

Variance

3-weeks-3-weeks 6-days n = 574 0.24 (255 of 574 <0.1 ng/ml) 0 - 415

4 weeks-4 weeks 6-days n = 574 21.7 (20 of 574 <0.1 ng/ml) 0 - 213

5 weeks-5-weeks 6-days n = 574 301.2 2.3 - 4,195 1839X

6-weeks-6-weeks 6-days n = 574 1,472 14.1 - 24,580 1743X

7 weeks-7 weeks 6-days n = 574 4,795 93.1 - 28,370 305X

8 weeks-8 weeks 6-days n = 574 6,813 124.5 - 42,120 338X

9 weeks-9 weeks 6-days n = 65 8,869 134.5 - 54,530 405X

10 weeks-10 weeks 6-days n = 45 9,864 123.4 - 60,130 487X

11 weeks-13-weeks 6-days n = 74 1,984 179.3 - 49,540 276X

14 weeks-17 weeks 6-days n = 494 768.8 58.5 - 8,411 143X

18 weeks-26-weeks 6-days n = 74 506.3 84.0 - 2,643 31.5X

27 weeks-40 weeks 6-days n = 50 522.4 66.1 - 1,873 28.3X

Data from a further 97 pregnancies that failed (miscarriage) were excluded from this table. Pregnancies which failed to implant in early pregnancy (total hCG
<0.1 ng/ml) are indicated in parenthesis.
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is an endocrine. We now know from recent research
that a variant of hCG, hyperglycosylated hCG, rather
than hCG itself, is produced by cytotrophoblast cells
[6,7]. Hyperglycosylated hCG is an autocrine or para-
crine and has been shown to directly promote implanta-
tion of pregnancy [6,8,9]. This is seeming what was
considered the hCG implantation function. Hyperglyco-
sylated hCG and its role in implantation of pregnancy
are reviewed in Section 3. A recent study by Fluhr and
collages [65], suggest a direct role of hCG in cytotro-
phoblast cell metalloproteinase production, this could be
true and needs careful investigation.
Finally, the hCG/LH receptor has been demonstrated

in adult women’s brains. CNS receptors are present in
several areas of the brain such as the hippocampus,
hypothalamus and brain stem [68,69] (Table 1). The
finding of an hCG receptor in these parts of the brain
may explain the hyperemesis gravidarum or nausea and
vomiting that occurs during normal pregnancy.
All told, hCG has a very wide range of actions through

the hCG/LH receptor. hCG and hyperglycosylated hCG
seemingly act to together to promote the growth and
differentiation of trophoblast cells or formation of the
placenta villous structures. They seemingly start their
action early with blastocyst signaling of the endome-
trium of forthcoming implantation. Hyperglycosylated
hCG then promotes implantation and growth of cytotro-
phoblast cells. hCG promotes the differentiation of cyto-
trophoblast cells to syncytiotrophoblast cells and so the
villous structures which are mixture of the two cell
types are formed. hCG also promotes the uterine vascu-
lature to maximally provide blood to the hemochorial
placentation structure. hCG also acts on the fetus to
promote growth and differentiation of fetal organs. Dur-
ing this time hCG acts on the maternal brain to pro-
mote hyperemesis gravidarum. Taking everything
together, hCG and hyperglycosylated hCG are the hor-
mone and autocrine that seemingly control pregnancy.

Biological function of hyperglycosylated hCG
Hyperglycosylated hCG is a glycosylation variant of hCG
produced by root cytotrophoblast cells and extravillous
cytotrophoblast cells [6,7]. It shares the amino acid
sequences of the a- and b-subunit of hCG with 8 oligosac-
charides side chains. While hCG has monoantennary
(8 sugar residues) and biantennary (11 sugar residues) N-
linked oligosaccharides, and mostly trisaccharide O-linked
oligosaccharides (3 sugar residues), hyperglycosylated hCG
has mostly larger fucosylated triantennary (15 sugars)
N-linked oligosaccharides and double-size hexasaccharide
O-linked oligosaccharides (6 sugar residues). As a result
the molecular weight of hCG is 36,000, while the molecu-
lar weight of hyperglycosylated hCG is 40,000 to 41,000,
dependent on extent of hyperglycosylation. The additional

sugars structures on hyperglycosylated hCG seeming pre-
vent complete folding of the ab dimer. This exposes other
receptor binding site on hyperglycosylated hCG. Common
regions include a transforming growth factor beta (TGFb)/
platelet-derived growth factor (PDGF)/Nerve growth
factor (NGF) common cystine-knot related structure [70].
The function of hyperglycosylated hCG, blocking apopto-
sis [71], and a likely metalloproteinase promoting activity
[72], suggests that hyperglycosylated hCG may be an
antagonist of TGFb receptor controlled functions in cyto-
trophoblast cells. While these pathways seems very likely
from multiple studies of placental implantation, cytotro-
phoblast cell apoptosis, cytotrophoblast cells and metallo-
proteinases and placental invasion biology, that TGFb
receptor is involved in these actions [73-86]. This still
needs to be proven by needed research. Hyperglycosylated
hCG appear to acts by antagonizing a cytotrophoblast
TGFb receptor, seemingly blocking apoptosis and promot-
ing invasion by metalloproteinases [71-86].
As shown, hyperglycosylated hCG is the principal var-

iant of hCG produced in early pregnancy. Hyperglycosy-
lated hCG comprises an average of 87% of the total
hCG produced in serum during the third week, 51%
during the fourth week and 43% during the fifth week
of gestation (Table 2). Hyperglycosylated hCG levels
then dwindles to <1% of total hCG during the 2nd and
3rd trimesters of pregnancy. This is consistent with
hyperglycosylated hCG having a function in promoting
implantation in early pregnancy [8,9,87].
Research clearly shows that hyperglycosylated hCG

acts on choriocarcinoma cells (cancer of cytotrophoblast
cells) promoting invasion [9,10]. Hyperglycosylated hCG
is the principal variant of hCG made by choriocarci-
noma cells [9,10]. The role of hyperglycosylated hCG in
choriocarcinoma invasion has been demonstrated now
by 3 independent groups, each showing that this mole-
cules promotes invasion by choriocarcinoma cells in
Matrigel chambers [9,71,88]. Other studies examine
growth of choriocarcinoma cells transplanted into nude
mice in vivo [9,71,88]. As demonstrated, blockage of
hyperglycosylated hCG with a specific antibody to
hyperglycosylated hCG, or by blocking a- and b-subunit
DNA expression, totally blocks choriocarcinoma growth
[9,71,88]. These finding all suggest the use of blockage
agent such as an antibody to hyperglycosylated hCG in
the treatment of choriocarcinoma. Other research indi-
cates that hyperglycosylated hCG, the cytotrophoblast
cell invasion promoter in choriocarcinoma, specifically
promotes the invasion in implantation of pregnancy,
and the deep implantation of the villous placental struc-
tures that is driven by extravillous cytotrophoblast cells
[6,8,87]. These studies used the B152 assay for hypergly-
cosylated hCG. Laboratory experiments show that anti-
body to hyperglycosylated hCG, antibody B152, blocks
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growth of cytotrophoblast cell lines in vitro (JEG-3 and
Jar cell line). Hyperglycosylated hCG promotes growth
of cytotrophoblast cells, at implantation and in chorio-
carcinoma [9,10,87].
As published [89,90], two third of pregnancy failures,

biochemical pregnancies and miscarriages of pregnancy,
are due to failure of blastocysts to implant appropriately.
The remaining one third of failures are due to hydatidi-
form mole or genetic abnormalities [89,90]. A total of
62 pregnancies were investigated. On the day of implan-
tation of pregnancy, 42 of 42 term pregnancies pro-
duced only hyperglycosylated hCG in vivo (26 of 42
cases) or >50% hyperglycosylated hCG of total hCG. As
found, two third of failures (13 of 20) produced insuffi-
cient hyperglycosylated hCG or <50% hyperglycosylated
hCG of total hCG [8]. It is inferred that pregnancy fail-
ures are due to insufficient production of hyperglycosy-
lated hCG leading to failure to implant appropriately.
These studies used the B152 assay for hyperglycosylated
hCG. Similar finding showing that hyperglycosylated
hCG is a marker of pregnancy failure have been
reported by Kovalevskaya et al [91], also using the B152
specific assay.
Similarly, hypertense disorders of pregnancy or pree-

clampsia in pregnancy are due to failure to appropriately
connect the implanting villous hemochorial placentation
with appropriate uterine blood supply [92,93]. Studies
indicate that this may also be due to a deficiency of
hyperglycosylated hCG [94].
In conclusion, hyperglycosylated hCG is the invasive

signal of cytotrophoblast invasion of pregnancy implan-
tation and choriocarcinoma invasion. Ineffective inva-
sion due to insufficient hyperglycosylated hCG occurs in
failed pregnancies, biochemical pregnancies and miscar-
riages, and seemingly in hypertense disorders of
pregnancy.

Biological function of free b-subunit
The free b-subunit produced is a hyperglycosylated var-
iant of the b-subunit of hCG with triantennary N-linked
oligosaccharides and hexasaccharide type O-linked oli-
gosaccharides [95,96]. Excess b-subunit or free b-subu-
nit is produced in hydatidiform mole, choriocarcinoma,
and almost exclusively by non-trophoblastic cancers of
all primaries.
Studies by Acevedo et al. [96-98], show the presence

of hCG free b-subunit in the membranes of all cancer
cell lines in vitro, and in all histological samples (slides)
of malignancies. This data is considered rather contro-
versial. New data, however, seemingly confirms these
findings in cervical cancer cells [99]. Other studies indi-
cate a clear association between detection of free b-sub-
unit in serum samples, or detection of its degradation
product, b-subunit core fragment, in urine samples, with

cases with poor grade and advanced stage cancer, or
poor outcome malignancy [100-103].
In a review of different articles investigating free

b-subunit as a prognostic marker in cancer, 12 of 13
studies demonstrated a clear correlation between
expression of hCG free b-subunit and poor prognosis
[100,104]. These studies together indicate that expres-
sion of free b-subunit leads to a negative outcome in
human malignancies. Multiple reports now indicate that
free b-subunit may have a specific role in malignant
transformation of cells [97,99,105-109]. In these, and
other studies, stimulation of malignant cell growth has
been demonstrated by the action of free b-subunit
[97,99,105-109].
Free b-subunit has a major role to play in non-

gestational neoplasm biochemistry, either as a promo-
ter causing poor malignancy outcome or as an element
involved in malignant transformation. Indeed, efforts
are now being directed toward using different hCG b-
subunit derivatives as vaccines in the treatment of
non-gestational malignancies. Achievement has been
reported, with hCG b-subunit immunity improving
cancer outcome or cancer survival [110-114]. The
association of free b detection and poor prognosis, in
combination with site specific hCG b-subunit vaccine
technology suggests a plausible route to the develop-
ment of adjuvant cancer therapies specifically targeting
patients with free b-subunit producing non-gestational
tumors.
Both hyperglycosylated hCG and free b promote can-

cer cell growth and malignancy [5,9,87,100,104,107,108],
similarly, both hyperglycosylated hCG and free b func-
tion by blocking or antagonizing apoptosis causing cell
growth [71,99,100,104,107,115]. In the action of both
hyperglycosylated hCG and free b the use of the TGFb
receptor is indicated [107,108,116-121]. As reported,
free b is produced by bladder cancer cells and inhibits
TGFb activity in bladder cancer cells [122]. Free b-subu-
nit antagonizes TGFb functions in bladder cancer cells
leading to growth and malignancy [33,122]. It is inferred
that both hyperglycosylated hCG and hyperglycosylated
hCG free b function similarly, both promoting cell
growth, invasion and malignancy by blocking apoptosis
through antagonizing a TGFb receptor. We hypothesize
that they both bind the same receptor and function
through similar pathways.

Biological function of pituitary hCG
Publications in the nineteen sixties, seventies and eigh-
ties suggested bacteria, crabs, and other bazaar sources
to explain detection of hCG in non-pregnant individuals,
including cancer cases [123-125]. We now have a better
understanding of the various not pregnant sources of
hCG. Possibilities today include non-trophoblastic
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cancer, as described in the preceding section, quiescent
gestational trophoblastic disease [126], familial hCG syn-
drome [127], and as shown in this chapter pituitary
hCG.
It is now been 30 years since hCG was first demon-

strated to originate from the pituitary gland [128]. Since
then, almost 40 publications have confirmed this obser-
vation and described how very low level hCG produc-
tion accompanies luteinizing hormone (LH) production
at the time of the mid-menstrual cycle pre-ovulatory
surge, a normal part of normal pituitary physiology
[128-134]. Most noticeably, pituitary derived hCG is
normally elevated along with pituitary LH and FSH in
women receiving an oophorectomy, during oligomenor-
rhea in perimenopause (age 40-50), and during amenor-
rhea in menopause (Age >50) [129-134]. In medical
practice, a positive hCG test prior to menopause sug-
gests pregnancy or gestational trophoblastic disease
[132-134]. A positive hCG test in perimenopausal and
menopause, can represent a predicament to physicians.
When an hCG positive patient is referred to an oncolo-
gist, they may be considered as having gestational tro-
phoblastic diseases or a non-gestational malignancy, and
may be placed on chemotherapy or given hysterectomy
with the hope that hCG will disappear. The hCG level
will not change in patients treated this way, since it is
natural hormone, pituitary hCG.
Pituitary hCG has an identical amino acid structure to

pregnancy hCG. It is unique, however, in having a vari-
able portion of sulfated oligosaccharides [133]. The sul-
fated groups are attached to N-acetylgalactosamine
residues, which replaces galactose and sialic acid resi-
dues in N- and O-linked oligosaccharides. As found
pituitary hCG with sulfated oligosaccharides has a
shorter circulating half life that pregnancy hCG [133].
As shown by Odell and Griffin [135,136], using an

ultra-sensitive radioimmunoassay LH (sensitivity 0.005
mIU/ml), pituitary hCG is produced at very low levels
(mean 0.01 mIU/ml) in men, with a wide range of 0.03
to 1.7 mIU/ml. Pituitary hCG was detected in women in
pulses in the luteal and follicular phases of the men-
strual cycle which paralleled LH levels [135,136]. Injec-
tions of Gonadotropin releasing hormone (GnRH) were
shown to directly promote circulating pituitary hCG
levels in men and women, just as they similarly pro-
motes LH levels [135,136]. It is inferred that pituitary
hCG supplements pituitary LH in men and women
[13,136]. The USA hCG Reference Service recently
examined over 8300 urine samples from women with
normal menstrual periods using the Siemens Immulite
1000 assay to total hCG [13,136]. As found, hCG (sensi-
tivity >1 mIU/ml) was detected at the time of the mid-
cycle LH peak in 232 of 277 (84%) menstrual cycles.
The mean hCG level was 1.54 ± 0.90 mIU/ml and the

range was <1 to 9.2 mIU/ml. This recent study very
much confirms the findings of Odell and Griffin show-
ing that pituitary hCG mirrors pituitary LH levels
[135,136].
The mass of hCG stored in an individual human pitui-

tary gland, 0.5-1.1 μg hCG per gland, is approximately
25-50 fold less than the mass of LH [146]. Publications
show that pituitary hCG has approximately half the bio-
logical activity in promoting progesterone production of
placental hCG [133]. As such, it is 40-fold more potent
than pituitary LH [15]. As indicated by Odell and Grif-
fin, circulating levels of hCG during the menstrual cycle
are approximately 1/120th of circulating levels of LH,
mIU/ml to mIU/ml [135,136]. Considering the 40-fold
greater potency of pituitary hCG, pituitary hCG may
therefore have an average potency of approximately 1/
3rd of the potency of LH. This makes pituitary hCG a
significant pituitary hormone.
As yet, it is unknown whether there is a specific func-

tion for pituitary hCG during the menstrual cycle. Pitui-
tary hCG could have functions separate from those of
LH. But even if pituitary hCG has no specific function,
there is a natural explanation for its production. There
is a single LH b-subunit gene next to the 8 back-to-
back hCG b-subunit genes on human chromosome 19
(Figure 1) [137]. hCG and LH share a single common
a-subunit. It is possible, as indicated in Figure 1, that
hCG b-subunit gene transcription is promoted conse-
quentially by gonadotropin releasing hormone (GnRH)
alongside specific LH b-subunit stimulation in pituitary
gonadotrope cells during normal menstrual cycle phy-
siology in women and normal physiology in men.
LH has multiple functions during the LH peak and

ovulation period. We know that both LH and hCG act
on the hCG/LH receptor to promote progesterone pro-
duction by corpus luteum cells [17-23]. We assume that
LH and hCG act on the same receptor on granulosa
and theca cells. As established, with the appearance of
an hCG/LH receptor on granulosa cells of the Graafian
follicle or primary follicle, LH first promotes follicular
growth [138,139], then stimulates diploid cell meiosis
[140,141]. LH causes the follicle to form a stigma or
protrusion [142], and then promotes collagenase pro-
duction to degrade and penetrate the stigma [142,143].
The penetration of the stigma causes bursting of the fol-
licle (ovulation) to occur. LH then acts to differentiate
the burst or ovulated follicle into a corpus luteum
[144,145]. It is not clear whether hCG just incidentally
assists LH in each of these steps or has specific func-
tions of its own in one or more of these steps.

hCG and hyperglycosylated hCG variation
hCG and associated molecules seeming have a wide
array of biological activities. hCG and hyperglycosylated
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hCG effective control placentation and fetal develop-
ment during pregnancy. Considering these critical biolo-
gical functions there is a major paradox that exists. That
is that individual hCG levels in serum (Table 2) and
urine (Table 3) of total hCG and hyperglycosylated hCG
vary extremely widely. In serum, in the 4th week of
gestation (weeks following start of menstrual period),
individual total hCG values vary by 824-fold, between
0.21 and 173 ng/ml amongst different women with sin-
gleton term outcome pregnancies (all failing pregnancies
removed from table) (Table 2). Hyperglycosylated hCG
values vary even wider during this week of pregnancy,
888-fold. In the 5th week of gestation total hCG values
vary by 704 fold, between 1.86 and 1308 ng/ml amongst
different women with singleton term outcome pregnan-
cies. Hyperglycosylated hCG values vary once again
slightly wider, 734-fold. We ask how and why does this
extremely wide variation exist with such important
molecules between different pregnancies, and how with
such extreme variation in signal, can all these pregnan-
cies go to term and produce similar size babies? This is
the subject of two articles. The first article addresses the
cause of the wide variation [147], and the second article
address the affect of the wide variation, or how the
receptors cope with this situation [Cole LA, paper sub-
mitted to J Clin Endocrinol Metab].
As published [147], pregnancy data in normally

anchored to the start of the last menstrual period.
Implantation of term outcome pregnancy (biochemical
pregnancies and miscarried pregnancies excluded) or
the start of gestation occured, however, anywhere from
day 16 to day 32 from this anchoring point in 82
woman with menstrual cycle of average length of 27.7 ±
2.4 days [147,148]. In a 28 day cycle this can be

considered as anywhere from 12 days prior to missing a
menstrual period to 2 days after the time of missing a
menstrual period. The day of implantation is 3 to 16
days after the LH peak. The day of implantation is the
day of starting viable pregnancy. Dating this important
date to the time of the start of the last menses (weeks
of gestation) is a source of great variability [147,148]. If
pregnancies were dated, however, to the day of implan-
tation (difficult to measure and difficult as an anchor
date), variation is dropped significantly [147]. Normally,
at the 4th week (28 days) since the last menstrual period
urine hCG ranges from <0.1 ng/ml to 213 ng/ml (Table
2). This suggests variation of >2130-fold. If the same
pregnancies were dated to 7 days after the time of
implantation, hCG ranges from just 3.1 ng/ml to 402
ng/ml indicating a variation of just 131-fold, a signifi-
cant difference, p = 0.00005. Clearly dating pregnancies
to time of implantation is preferable to dating to start of
last menstrual period, but is difficult. Difficult in that it
requires daily hCG measurements while attempting to
achieve pregnancy to determine time of implantation.
Clearly dating of pregnancies is a cause of variation.
Examining 594 pregnancies from implantation to

term, only one other cause could be found for individual
variations in hCG. That is hCG daily increase rate in the
first 4 weeks following implantation. hCG daily increase
rate was measured in 82 women (all results from
women with biochemical or miscarried pregnancies
removed) with term outcome pregnancies, from day of
implantation for 28 days. The increase rate per day was
averaged over the 28 days. The increase rate per day
ranged from 1.52-fold per day to 2.92-fold per day
among the 82 women [147]. If this is considered over 7
days then it is equivalent to 1.527 and 2.927 or to an

Figure 1 A diagrammatic representation of the arrangement of genes in the LHb/hCGb gene cluster on chromosome 19q13.32. The
gray arrows show the postulated chance stimulation of hCG b-subunit genes by the GnRH promoting LH b-subunit gene transcription.
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increase of 18.7-fold vs. an increase of 1810-fold. Indivi-
dual hCG daily amplification rate is also a major cause
of variation.
It is a fact that pregnancy to pregnancy hCG levels

vary greatly. How does the human body deal with these
wide variations in hCG concentrations? How does each
woman end up with a normal term delivery? This was
carefully investigated [Cole LA, paper submitted to J
Clin Endocrinol Metab]. Most hCG and hyperglycosy-
lated hCG-related parameters, like promotion of uterine
vascular angiogenesis, promotion of implantation, differ-
entiation of cytotrophoblast cells, growth and differen-
tiation of fetal organs, are not readily measurable in
normal term pregnancies. One hCG-related biological
activity was, however, measurable, promotion of proges-
terone production by corpus luteal cells at 3-6 weeks of
gestation. Serum progesterone was measured during the
4th week of gestation, in those providing serum samples.
During the 4th week of pregnancy serum hCG ranged

widely from 0.21 to 173 ng/ml or variation of 824-fold.
Serum progesterone during this same period, in these
same women, did no vary widely, 6.5 to 101 ng/ml, or
16-fold (paper submitted to J Clin Endocrinol Metab).
The median progesterone concentration was 22 ng/ml.
Interestingly, in the case with extremely low serum hCG
concentration, 0.21 ng/ml or 23 mIU/ml, the progester-
one was slightly higher than the median, 36.1 ng/ml. In
the case with extremely high hCG concentration, 173
ng/ml or 1903 mIU/ml, the progesterone concentration
was 11.4 ng/ml, or slightly lower that the median. The
hCG levels stretched 824-fold from 0.21 to 173 ng/ml,
but the resulting progesterone concentrations or biologi-
cal activity stretched just 3.16-fold from 11.4 to 36.1 ng/
ml, why we ask?
This is apparently due to the hCG/LH receptor spare

receptor concept [149-151]. Under the spare receptor
concept, when only a tiny proportion of receptors is
activated in a cell it may yield a similar cellular response
to all receptors on the cell being activated [149-151].
This is the best explanation of these findings. Similarly,
in cases with extremely high serum hCG concentration
lower than normal progesterone was observed. This is
seemingly due to receptor down-regulation in the pre-
sence of high concentrations of hCG [152-154]. As
demonstrated, high concentrations of hCG decrease the
number of receptor on cells by degrading the receptor
transcript in cells reducing their half-life [152]. Just at
the spare receptor mechanism deals with low hCG con-
centrations at the receptor level, the down-regulation
mechanism deals with high hCG concentrations at the
receptor level. Assumingly the same as reported to hap-
pen at the corpus luteal hCG/LH receptor occurs at the
decidua, myometrium, fetal organ, uterine vasculature
and human brain receptors. Assumingly, it also happens

at the hyperglycosylated hCG or TGFb antagonism site.
The end result is that the hCG and hyperglycosylated
hCG variation paradox may be a simple case of “nature
takes care of it.”

The hCG/LH receptor
The hCG/LH receptor is located on corpus luteal cells
of the ovary for promotion of progesterone, on the
decidua for initial communication with the blastocyst on
myometrial tissue for growth in line with fetus and for
muscle relaxation, on uterine vasculature for angiogen-
esis, on umbilical cord tissue for growth, on fetal organs
for growth and differentiation, on cytotrophoblast cells
for differentiation, and on human brain cells, leading to
hyperemesis gravidarum. The hCG/LH receptor
responds to hCG, LH and hyperglycosylated hCG, but
not hCG free subunits or nicked hCG [155]. There is
solid evidence showing that the a-subunit has a role in
receptor binding and b-subunit has a function in recep-
tor specificity [156,157]. The human hCG/LH receptor
comprises 675 amino acids [158-160]. The hCG/LH
receptor is located on human chromosome 2p21, with
11 exons and 10 introns [161-163], exons 1-10 and a
portion of exon 11 encode the extracellular domain
[164]. hCG/LH receptor sequence and cloning studies
indicate that it is part of a large family of guanine
nucleotide binding proteins (G-protein), membrane
coupled receptors [165,166].
Stimulation by hCG or LH, activates the G-protein,

resulting in the stimulation of the membrane bound
adenylate cyclase (Figure 2). Activation of adenylate
cyclase catalyses the conversion of ATP to cAMP elevat-
ing intracellular levels (Figure 2). Following upregulation
of cAMP, activation of phosphokinase A then occurs,
resulting in phosphorylation and activation of the cAMP
responsive element [159].
Activation of protein kinase activates the mitogen pro-

tein kinase pathways and a Janus-kinase signaling path-
way [167]. All endocrine functions involve DNA
transcription or generation of mRNA. Promotion of pro-
gesterone production in corpus luteal cells involves the
synthesis of cholesterol side-chain cleavage enzyme.
Fetal tissue growth involves protein synthesis. A parallel
mechanism enhances the synthesis of an hCG/LH
receptor binding protein. This activates exo- and endo-
nuclease and leads to the destruction of receptor
mRNA. This mechanism limits receptor expression,
effectively down-regulating the receptor [168].
Other studies indicate an inositol phospholipid protein

kinase-C mechanism is involved in the action of hCG/
LH receptors [159]. Davis and colleagues [169] and
Guderman and colleagues [169] show that LH and hCG
stimulate a phospholipase C, leading to stimulation of
protein kinase C and activation of hCG/LH receptor.
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Moreover, recent data suggest that in the case of hCG
signaling at implantation and production of natural
killer cells binding with a mannose receptor may be the
activation mechanism [170,171]. Mutiple pathways are
proposed here for hCG/LH receptor activation. While
they may all be effective in different cells, they all have
to be carefully considered as parts of the principal
receptor mechanism.
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