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Abstract

Background: The objective of this investigation was to determine if kinase insert domain/vascular endothelial
growth factor receptor 2 (KDR/VEGFR2) genetic variation was associated with the development of ovarian
hyperstimulation syndrome (OHSS) in patients undergoing controlled ovarian hyperstimulation (COH).

Methods: This was a case–control study of 174 patients who underwent controlled ovarian stimulation. Patient
blood samples were genotyped for single nucleotide polymorphisms (SNPs) spanning the KDR locus. OHSS
development, clinical outcome variables, SNP and haplotype frequencies were compared between control (n = 155)
and OHSS (n = 19) groups.

Results: Patients who developed OHSS had significantly higher response markers (estradiol levels of the day of hCG
administration, number of follicles developed, number of eggs retrieved) than control patients. When adjusted for
age and self-identified race, the rs2305945 G/T genotype was associated (P = 0.027) with a decreased risk (OR = 0.30;
95% CI = 0.10, 0.93) of developing OHSS using an overdominant model. The rs2305945 G/T variant was also
associated with decreased COH response (number of follicles, number of eggs retrieved) in an overdominant model.
The rs2305948, rs1870378, rs2305945 (C-T-G) haplotype was associated with both decreased COH response and
OHSS risk (unadjusted OR = 0.10; 95% CI = 0.01, 0.80, P = 0.031).

Conclusions: The KDR receptor is believed to play a central role OHSS development and is a target for
pharmacological prevention of OHSS. These results indicate that genetic variation in the KDR gene may impact
individual risk of developing OHSS from COH. In addition, the rs2305948 SNP and C-T-G haplotype might serve
as potential biomarkers for poor ovarian response to COH.
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Background
Controlled ovarian hyperstimulation (COH) has played
a leading role in improving outcomes from in vitro
fertilization (IVF). The backbone of COH pharmacotherapy
involves the use of exogenous gonadotropins. While there
are several clinical predictors [1-4] of ovarian responsive-
ness that aid in individualizing COH [5,6], interindividual
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variation in response to gonadotropin administration still
exists. Additionally, patient risk of developing complica-
tions from COH is similarly unpredictable.
For the normal responder, COH is associated with some

degree of risk for the iatrogenic complication ovarian hy-
perstimulation syndrome (OHSS). Potentially life threat-
ening, OHSS leads to hospitalization in 1.9% of IVF cases
[7]. Moderate to severe OHSS may be underestimated
since many such cycles are frequently cancelled or result
in the cryopreservation of all embryos [8]. Mild OHSS is
relatively common with symptoms including abdominal
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bloating and mild weight gain. OHSS is characterized by
cystic enlargement of the ovaries, increased vascular per-
meability (VP) and movement of fluid from the peritoneal
vasculature into the third space. Symptoms and signs of
severe OHSS include dyspnea, hemoconcentration, di-
minished renal perfusion and thromboembolism [9,10]. In
cases of severe OHSS, myocardial infarction and/or stroke
can lead to death [9,10]. Early onset OHSS occurs within
3–5 days after oocyte retrieval and is related to the hyper-
response of the ovaries to COH followed by the use of
hCG for oocyte maturation. Late onset OHSS appears 9–
12 days after oocyte retrieval and results from COH and
the endogenous hCG produced by a developing embryo
[11]. Although rare, spontaneous cases of OHSS have been
reported with the supra-physiologic hCG levels seen with
multiple gestations or molar pregnancy [12]. Reports of fa-
milial spontaneous gestational OHSS suggest a genetic
cause [13]. Regardless of severity, the development of
OHSS is associated with significant physical, psychological
and financial implications [14].
Standard practice emphasizes an avoidance approach in

preventing OHSS (see below). There are several known
risk factors for OHSS development that can assist in tai-
loring gonadotropin dosage [15-17]. In addition, markers
for COH response (i.e. baseline anti-mullerian hormone
(AMH) levels, estradiol levels, intermediate follicle num-
ber and FSH levels) may serve as early indicators allowing
corrective measures to be taken to decrease severity of
OHSS. Specific preventative strategies include coasting,
avoiding the use of hCG, delaying/reducing hCG admi-
nistration or cryopreserving all embryos [18]. Unfortu-
nately, beyond avoiding hCG for oocyte maturation, most
current, proactive measures are not completely effective in
preventing OHSS.
The molecular etiology of OHSS is unclear. Elevated

serum estradiol [14], cytokine and interleukin levels have
all been detected in the peritoneal fluid of women with
OHSS [19,20]. Moreover, roles for renin-angiotensin,
prolactin and prostaglandins in the increased VP ob-
served during OHSS have also been proposed [21]. The
most important VP factor in the ovaries is vascular
endothelial growth factor (VEGF). In rats, VEGF mRNA
levels and VP increased following gonadotropin stimula-
tion [22] which was reversed by VEGF antiserum [23].
In humans, hCG administration increased VEGF expres-
sion in granulosa-lutein cells [24] and VEGF blood levels
predicted the development of OHSS and its severity
[25]. In addition, a single nucleotide polymorphism in
the VEGF gene has been associated with increased
OHSS risk [26]. Consequently, the prevailing model for
OHSS development involves aberrant VEGF signaling as
a key factor driving increased VP [23,27].
In the ovaries, VEGF-mediated VP, at least in part, is

mediated by the kinase insert domain/vascular endothelial
growth factor receptor 2 (KDR/VEGFR-2/Flk-1) signaling
mechanisms [28-33]. In support of this, inhibition of both
VEGF [34,35] and KDR [22,31,32,35] has been shown
to ameliorate VP development in models of OHSS. In
addition, dopamine [36] and [37] dopamine receptor ago-
nists [20,27,38-40] are known inhibit KDR function
[36,41] and show promise as both preventative and thera-
peutic options for OHSS [39,42-45].
Despite much research on the topic, very few predict-

ive genetic biomarkers exist for COH outcome [46].
Genetic variation in FSHR [47], CYP19A1 [47], BMP15
[48], VEGF [26] and LHCGR [49] have all been associ-
ated with high response to COH and/or OHSS. KDR has
been implicated in the etiology of OHSS and also serves
as a target for pharmacotherapy [20,38,40,45,50]. How-
ever, no information is available on the association of
KDR genetic variability and OHSS risk. As a result, the
focus of this investigation was to evaluate the role of
KDR polymorphisms in the development of OHSS.

Methods
This study was approved by George Washington Univer-
sity Institutional Review Board. Patients’ and written in-
formed consent was obtained prior to enrollment of
patients (2010–2011). All IVF patients (>18 years of age)
who were treated at the GW Fertility and IVF Center
with injectable gonadotropins were invited to participate.
All patients were evaluated for ovarian reserve testing,
semen analysis (male partner), uterine cavity study and
thyroid screening. Controlled ovarian stimulation proto-
cols were as previously described [49]. After initial fol-
licular monitoring (serum estradiol and transvaginal
ultrasound assessments), FSH dosing was titrated based
upon the ovarian response. hCG trigger was withheld for
E2 levels over 4000 pg/ml thus minimizing risk for
OHSS. Both control and OHSS groups had similar risk
factors including those identified at time of hCG trigger.
Ovarian hyperstimulation syndrome was defined clinically
based on established criteria [51,52]. For each patient the
following clinical endpoints were recorded: estradiol level
on day of hCG injection, number of ovarian follicles on
day of hCG, number of follicles/follicles >16 mm), number
of eggs retrieved and the incidence of OHSS.
For each patient, blood (5 mL) was collected and DNA

was extracted using a QiaCube automated instrument with
the QIAamp DNA Blood Mini Kit (Qiagen, Valencia, CA).
KDR/VEGFR-2 SNPs rs3025035, rs2305948, rs2219471,
rs1870378, rs2305945 and rs1870377 were genotyped
using Real-Time PCR (TaqMan®). PCR was performed
with a reaction volume of 10 μl, including 4.75 μl of
TaqMan® Universal PCR Master Mix, 0.5 μl of 20X
DME Genotyping Assay Mix, 3.75 μl of DEPC H2O, and
1.0 μl of genomic DNA. The PCR cycling conditions
were as follows: 1 cycle of 50°C for 2 minutes, followed
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by 1 cycle of 95°C for 10 minutes and 50 cycles of 92°C
for 15 seconds and 60°C for 90 seconds. Appropriate
negative controls were included with each run. Allelic
discrimination was carried out by measuring fluores-
cence intensity using an ABI 7300 Real Time PCR Sys-
tem (Applied Biosystems) and SDS software Version 1.3
(Applied Biosystems). PCR/sequencing primers are
shown in Table 1. The genotype calls for each SNP were
verified in subsets of samples by DNA sequencing as
previously described [49] using PCR primers in Table 1.
Comparisons between OHSS and control samples for

each of the clinical variables were conducted using SPSS
(IBM, Armonk, NY). Due to the skewed nature of the data
an independent samples Mann–Whitney U test was used
for all comparisons. SNPs spanning the KDR locus were
selected using Haploview (version 4.2, r2 > 0.75) [53] (CEU
population) [54]. Analyses for Hardy-Weinberg equilib-
rium, linkage disequilibrium (LD) and unadjusted odds ra-
tios for OHSS risk were conducted using SNPSTATS [55]
and HAPSTAT [56].

Results
We obtained genotypic and clinical information for 174
patients who underwent IVF. We have previously reported
on the association of LHCGR rs4073366 C allele carrier
status with OHSS (n = 172) risk in this patient population
[49]. However, we did not perform statistical comparisons
of the control and OHSS populations’ clinical characteris-
tics. OHSS patients (n = 19) had significantly greater COH
response markers than control patients (n = 155). Specific-
ally, estradiol (E2) levels (median; 25%, 75% percentile) on
the day of hCG administration [Controls: 1735.0 pg/mL
(1031.0-2280.0); OHSS: 2606.0 pg/mL (1996.0-3471.0)],
number of follicles (median; 25%, 75% percentile) ge-
nerated [Controls: 2.0 (1.0-4.0); OHSS: 5.0 (3.0-10.0)] and
number of eggs (median; 25%, 75% percentile) retrieved
[Controls: 8.0 (4.0-13.0); OHSS: 18.0 (13.0-26.0)] were
all significantly (P < 0.001) higher in OHSS patients. In
addition, OHSS occurred to a greater extent in patients
of self-identified Caucasian ethnicity versus Black, non-
Hispanic or Asian/Pacific Islander [49].
Six SNPs in the KDR gene were investigated for asso-

ciation with OHSS. SNPs were selected based on pair-
wise linkage disequilibrium analysis using HapMap [57]
Table 1 Primer sequences for DNA sequencing

SNP Forward (5′ to 3′)

rs2219471 TCCACAGGGATTGCTCCAAC

rs3025035 CAGGGGTCCTTGGGAAAGAT

rs2305945 GTGGGTACTAAGCTATGTAATTC

rs2305948 TTTCCAAGACCATAGCTTACCAT

rs1870377 TGGTACTGCTAAAAGTCAATGG

rs1870378 CACTACGGCCTCAAGAGAGAAG
data (CEU population) in the KDR for the prediction of
haplotype blocks. The 6 SNPs (rs3025035, rs2305948,
rs2219471, rs1870378, rs2305945, rs1870377) spanning
the KDR gene were selected and genotyped in both con-
trol and OHSS patients. SNPs that were not in Hardy
Weinberg equilibrium (rs3025035, rs2219471, rs1870377)
were omitted from further analysis. The remaining SNPs
rs2305948, rs1870378 and rs2305945 were not in linkage
disequilibrium (See Additional file 1: Table S1) and existed
in 3 separate predicted haplotype blocks (data not shown).
Specifically, tagged SNPs rs1870378 and rs2305945 in-
cluded rs2219471 and rs6838752 (covering ~5 kb) and
rs3828550 and rs13109660 (covering ~5 kb), respectively.
For rs2305948, C/C, C/T and T/T variants occurred at

frequencies of 0.75, 0.23 and 0.02, respectively in the en-
tire patient population (Table 2). The observed frequen-
cies for rs1870378 C/C, C/T and T/T genotypes were
0.55, 0.37 and 0.07 of all patients in the study. The
rs2305945 G/G, G/T and T/T variants were found at fre-
quencies of 0.40, 0.45 and 0.14 in the total population as
well. Although there were differences in the frequencies
of SNPs in OHSS case versus control patients, none
reached statistical significance (alpha of 0.05).
None of the individual SNPs were independent predic-

tors (unadjusted) of OHSS risk (data not shown). In an
overdominant model, rs23205945 was associated (P =
0.031) with decreased OHSS risk (OR = 0.30; 95% CI =
0.10, 0.93) when corrected for age and self-identified race
(Table 3). When adjusted for age (P = 0.017), race (P =
0.017) or both age and race (P = 0.013), the rs2305945 G/T
genotype was significantly associated with fewer follicles
generated by COH (See Additional file 2: Table S2). In
addition, the rs2305945 G/T genotype was marginally as-
sociated (P = 0.046) with a fewer number of eggs retrieved
in an overdominant model only after adjustment for self-
identified race (See Additional file 3: Table S3).
A significant difference in haplotype distribution between

OHSS cases and control patients (P = 0.033) was observed.
Interestingly, one (rs2305948, rs1870378, rs2305945; T-T-
T) of the eight possible haplotypes was not observed in ei-
ther the OHSS case or control populations (Table 4). Two
haplotypes (T-C-G, T-C-T) were not detected in the OHSS
population, but also occurred at low frequencies (<5.0%) in
the control population as well. All missing haplotypes were
Reverse (5′ to 3′)

ATATTTGGCCCCGTGGAGTG

AGAACAGGCCCTACCCTTCT

CC CCACACAGAGCTTGTGGTTTA

CAGCATCAGCATAAGAAACTTGTA

GGCTGCGTTGGAAGTTATTT

CTGGGTTCCCAAATGTTATGCG



Table 2 SNP frequencies in controls and OHSS cases

Variant Frequency

Total (n = 174) Controls (n - 155) OHSS Cases (n = 19)

rs2305948

CC 131 (0.75) 116 (0.75) 15 (0.79)

CT 40 (0.23) 36 (0.23) 4 (0.21)

TT 3 (0.02) 3 (0.02) 0

rs1870378

CC 96 (0.55) 83 (0.54) 13 (0.68)

CT 65 (0.37) 60 (0.39) 5 (0.26)

TT 13 (0.07) 12 (0.08) 1 (0.05)

rs2305945

GG 70 (0.40) 61 (0.39) 9 (0.47)

GT 79 (0.45) 74 (0.48) 5 (0.26)

TT 25 (0.14) 20 (0.13) 5 (0.26)

Table 4 Haplotype estimation (n = 174)

Haplotype Frequency

rs2305948 rs1870378 rs2305945 Total Control OHSS Cases

C C G 0.352 0.334 0.474

C C T 0.327 0.329 0.342

C T G 0.164 0.185 0.026

T T G 0.073 0.069 0.105

T C G 0.041 0.044 –

C T T 0.025 0.017 0.053

T C T 0.019 0.022 –

T T T – – –
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not included in the haplotype-based logistic regression
analysis. The rs2305948, rs1870378, rs2305945 (C-T-G)
haplotype (unadjusted) was found to be moderately pro-
tective (P = 0.031) for OHSS risk (OR = 0.10; 95% CI =
0.01, 0.80) (Table 5). When adjusted for age (P = 0.020),
race (P = 0.023) or age/race (P = 0.011), the C-T-G haplo-
type was significantly associated with decreased OHSS de-
velopment (Table 6). Additionally, COH response variables
number of follicles >16 mm and eggs retrieved were
significantly lower in the C-T-G haplotype (See Additional
file 4: Table S4 and Additional file 5: Table S5). Only one
other haplotype (C-C-T) was significantly associated
with an endpoint (fewer follicles > 16 mm) (See Additional
file 6: Table S6).

Discussion
The aim of this investigation was to determine whether
KDR genetic variation was associated with OHSS risk in
COH patients. We found a novel association between
the KDR rs2305948, rs1870378, rs2305945 C-T-G haplo-
type and reduced risk of developing OHSS. Patients with
Table 3 rs2305945 association with OHSS (n = 174, Adjusted f

Model Genotype Controls

Codominant G/G 61 (39.4%)

G/T 74 (47.7%)

T/T 20 (12.9%)

Dominant G/G 61 (39.4%)

G/T-T/T 94 (60.6%)

Recessive G/G-G/T 135 (87.1%)

T/T 20 (12.9%)

Overdominant G/G-T/T 81 (52.3%)

G/T 74 (47.7%)
this haplotype also exhibited decreased ovarian response
to COH (i.e. number of follicles >16 mm, eggs retrieved).
In addition, the rs2305945 G/T variant was similarly as-
sociated with decreased response to COH and lower risk
of hyperstimulation. These findings are the first to sug-
gest that KDR polymorphisms might serve as predictive
genetic biomarkers for ovarian response to COH.
A central component of the pathophysiology of iatro-

genic OHSS is increased ovarian VP during COH. The
molecular mechanism for increased VP is thought to in-
volve aberrant VEGF signaling [58]. Serum VEGF levels
are elevated in OHSS and predictive for OHSS risk [59].
In addition, a VEGFA polymorphism has been as recently
identified as a risk allele for OHSS [26]. VEGF-mediated
VP is thought to act through KDR-dependent mechanisms
and dopamine/dopamine receptor agonists [27,36], which
purportedly inhibit KDR function, have shown promise as
therapies for OHSS [27,39,42-44]. Interestingly, we ob-
served a moderate association between the (rs2305948/
rs1870378/rs2305945) C-T-G haplotype and lower OHSS
risk. Given that the pathophysiology of OHSS involves in-
creased VP, these results suggest that C-T-G haplotype
could potentially result in a KDR receptor with decreased
function.
The C-T-G haplotype included two intronic SNPs:

rs1870378 (in intron 15) and rs2305945 (intron 12). Neither
or Age and Race)

OHSS OR (95% CI) P-value

9 (47.4%) 1 0.064

5 (26.3%) 0.35 (0.10, 1.19)

5 (26.3%) 1.70 (0.46, 6.34)

9 (47.4%) 1 0.320

10 (52.6%) 0.59 (0.21, 1.65)

14 (73.7%) 1 0.110

5 (26.3%) 2.79 (0.82, 9.47)

14 (73.7%) 1 0.027

5 (26.3%) 0.30 (0.10, 0.93)



Table 5 Haplotype frequencies estimation and association with OHSS (n = 174)

Haplotype rs2305948 rs1870378 rs2305945 OR (95% CI) P-value

1 C C G 1 —

2 C C T 0.72 (0.32, 1.59) 0.42

3 C T G 0.10 (0.01, 0.80) 0.031

4 T T G 1.15 (0.34, 3.87) 0.82

5 T C G – –

6 C T T 2.72 (0.35, 21.30) 0.34

7 T C T – –

Global haplotype association p-value: 0.033.
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of these polymorphisms have been associated with disease
risk or clinical outcomes. In contrast, the rs2305948 (G >
A) variant is a nonsynonymous SNP located in exon 7 that
results in an amino acid change from valine to isoleucine
(codon 297). It resides in the NH2-terminal portion of the
receptor located in the extracellular, ligand-binding domain.
In vitro evidence suggests that rs2305948 (G >A) variant
decreases KDR binding to VEGF [60]. Clinically, rs2305948
has been associated with increased risk of coronary artery
disease [60], intracerebral hemorrhage and stroke recur-
rence [61]. In addition, the rs2305948 T allele exists in a
haplotype with rs10020464 and rs7692791 that was moder-
ately associated with a lower risk of developing neovascular
age-related macular degeneration [62]. However, we found
that the rs2305948 C allele in the C-T-G haplotype was as-
sociated with decreased OHSS risk. Therefore, the exact
role, if any, which the rs2305948 C allele plays in the appar-
ent protection from OHSS provided by the C-T-G haplo-
type, requires further investigation.
We found only one polymorphism to be moderately as-

sociated with OHSS development when corrected for co-
variates (age, race) known to be independent predictors of
OHSS risk [8,49]. The rs2305945 G/T genotype was as-
sociated with a reduced likelihood of OHSS (OR = 0.30;
95% CI = 0.10, 0.93) in an overdominant model. This SNP
resides within intron 12 located ~153 bp downstream of
exon 12. It is intriguing that the rs2305945 genotype and
the C-T-G haplotype were associated with both decreased
ovarian response and lower risk of OHSS. We postulate
Table 6 Haplotype (CTG) association with OHSS risk

Haplotype OR 95% CI P-value

rs2305948 (C), rs1870378 (T), rs2305945 (G)

Unadjusted

0.10 0.01, 0.80 0.031

Adjusted

Age 0.08 0.01, 0.66 0.020

Race 0.08 0.01, 0.69 0.023

Age, Race 0.04 0.00, 0.46 0.011
that rs2305945 SNP could impact KDR mRNA processing
and/or stability leading to decreased downstream signal-
ing. However, the precise mechanism by which the G/T
heterozygote impacts KDR function requires additional
mechanistic studies.
The majority of poor responders to COH suffer from re-

duced ovarian reserve [63]. While this study has identified
potential protective genetic biomarkers for OHSS, the re-
sults are also potentially applicable to identifying patients
with diminished ovarian reserve (DOR). To date, there are
very few genetic biomarkers for DOR [64-67]. We found
that the rs2305945 SNP and the C-T-G haplotype were
both associated with diminished ovarian response to
COH. It would be interesting to specifically investigate the
frequency of these variants in COH poor responders and/
or patients with DOR. As a result, our results offer prom-
ise that KDR polymorphisms might also serve as novel,
predictive biomarkers for DOR in COH patients.
The KDR receptor plays an integral role in ovarian VP

and has shown promise as a target for pharmacologic
intervention to prevent OHSS. However, there is no
information available on the impact of KDR polymor-
phisms on patient risk of developing OHSS during
COH. The results from this preliminary study indicate
that KDR polymorphisms are potential predictive bio-
markers for OHSS development. We believe this is the
first study to link KDR polymorphisms with OHSS risk
and decreased ovarian response to COH. A limitation of
the study was the small number of OHSS cases available
for analysis. The significance of these findings requires
validation in a larger, separate population of patients.
Given that the variants identified in this study have in-
dividually small effect sizes, future work is aimed at
uncovering other risk alleles in KDR and other genes im-
plicated in ovarian angiogenesis and VP.

Conclusions
The KDR receptor plays a central role in VEGF-
mediated vascular permeability in OHSS and represents
a potential target for pharmacologic intervention of
OHSS. These results indicate that genetic variation in
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the KDR gene may impact individual risk for developing
OHSS from COH. In addition, these results suggest that
the rs2305948 variant and C-T-G haplotype may serve as
potential biomarkers for diminished response to COH.
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