Santos et al. Reproductive Biology and Endocrinology 2014, 12:117
http://www.rbej.com/content/12/1/117

=) rJi i == REPRODUCTIVE BIOLOGY
JA—)W—' AND ENDOCRINOLOGY

REVIEW Open Access

Usefulness of bovine and porcine IVM/IVF models
for reproductive toxicology

Regiane R Santos"?’, Eric J Schoevers® and Bernard AJ Roelen®*

Abstract

Women presenting fertility problems are often helped by Assisted Reproductive Techniques (ART), such as in vitro
fertilization (IVF) programs. However, in many cases the etiology of the in/subfertility remains unknown even after
treatment. Although several aspects should be considered when assisting a woman with problems to conceive, a
survey on the patients’ exposure to contaminants would help to understand the cause of the fertility problem, as
well as to follow the patient properly during IVF. Daily exposure to toxic compounds, mainly environmental and
dietary ones, may result in reproductive impairment. For instance, because affects oocyte developmental
competence. Many of these compounds, natural or synthetic, are endocrine disruptors or endocrine active
substances that may impair reproduction. To understand the risks and the mechanism of action of such chemicals
in human cells, the use of proper in vitro models is essential. The present review proposes the bovine and porcine
models to evaluate toxic compounds on oocyte maturation, fertilization and embryo production in vitro. Moreover,
we discuss here the species-specific differences when mice, bovine and porcine are used as models for human.
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Background
The adverse effects caused by various natural and syn-
thetic chemicals include impairment of both the male
and the female reproductive system. Many of these ef-
fects are related to temporary or permanent actions on
the endocrine system. When the mechanisms of action of
these chemicals are endocrine-mediated, they may induce
non-heritable defects culminating with sub/infertility,
growth retardation, endocrine disorders or even death of
the organism/subpopulation or its descendants [1].
Subfertility of women at reproductive age is often
caused by endocrine disorders, occasionally (~10% of the
cases) characterized by polycystic ovary syndrome (PCOS)
[2,3]. Although there is strong evidence that PCOS is a
genetic disease, diagnoses do not always indicate the
cause of the sub/infertility neither the mode of action of
the causative agent [4]. It has been shown that PCOS can
be correlated with exposure to the endocrine disruptor
bisphenol A (BPA) [5]. Also, women with PCOS when
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exposed to nicotine have a higher chance to acquire other
metabolic disorders [6]. Probably, many other endocrine
active substances present in the environment, food, drugs
or cosmetics will also cause subfertility. More than 25% of
the subfertility cases are of unknown etiology and remain
not diagnosed, and the affected couples attempt to achieve
their parenthood experience through ART. However,
knowledge on the source of subfertility, as well as the risks
of oocyte defects during maturation will improve the suc-
cess of IVF programs. Women exposed to a determined
toxic agent may have a temporary negative effect on their
oocyte quality, which may reflect on the health of the
offspring.

Most information regarding reproductive toxicology
has been obtained from case reports, clinical analyses
and in vivo tests with mice and rats. The use of labora-
tory animals for such tests is under debate for many
years [7], because in vivo reproductive toxicity tests re-
quire large numbers of animals. Indeed approximately
70% of all the animals used in toxicological studies are
for assays involving reproductive toxicity [8]. Further-
more, rodents are not the most suitable model animals
for human, especially when considering oocyte matur-
ation and fertilization [9].
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Although the in vivo assays should not as yet be elimi-
nated, alternative assays including computational, inte-
grative in vitro tests using embryonic stem cells and cell
lines are novel approaches in reproductive toxicology
[10,11]. Available screening tests for hormone-like active
compounds do not identify endocrine disruptors nor as-
sure that a chemical will have an endocrine activity [12].
Nevertheless, such tests are useful to suggest the poten-
tial effect of certain substances. Furthermore, if the tests
are integrated and projected with a clear knowledge on
the main targets of reproductive toxic compounds and
their involved mechanisms, the use of a large number of
laboratory animals can be avoided.

Due to their complexity, not always reproductive cells
such as oocytes can be mimicked by somatic cells. More-
over, oocytes and their surrounding cumulus cells have to
undergo a unique process known as maturation that for
the oocyte includes meiosis. Indeed, during maturation,
oocytes are susceptible to epigenetic alterations that may
interfere with fertilization and early embryo development
[13]. Accordingly, exposure to polycyclic aromatic hydro-
carbons before ART affects oocyte quality, as observed in
women with a lower rate of cell division after IVF [14]. By
evaluating data from different laboratories, it has been
suggested that maturation of bovine oocytes can be used
as a reliable model to screen toxic agents for human
oocytes [15-17]. Also, the use of the porcine model has
been indicated to evaluate oocyte maturation as a model
for human oocytes due to some similarities between these
species [18-20]. Furthermore, both bovine and porcine
models can reduce the large number of laboratory animals
used for reproductive testing, since oocytes can be ob-
tained from slaughterhouse ovaries which are leftover or-
gans when animals enter the food production chain.

The REACH (Registration, Evaluation, and Authorization
of Chemicals) legislation is a European program impacting
manufacturers worldwide since 2007/2008. For instance,
marketing in Europe of any chemical (pure form or in a
formulation) is allowed solely if data on physical/chemical
properties, toxicity and environmental effects are pro-
vided. As a result, there is an enormous increase in the
number of experimental animals used to test the safety of
many thousands of chemicals, existing and new ones [21].
However, the adopted EU directive from 2010 focus on
the protection of animals used for scientific purposes and
demands a decrease in the number of animals used in
research, including toxicity (drug) testing [22]. Innovative
approaches have been suggested by developing a battery
of tests targeting aspects of the reproductive cycle, and by
integrating the approaches based on the mechanisms in
cells and tissues [21]. The possibility to use slaughterhouse
material for in vitro tests related to gametes and early
embryo development appears as an important option to
diminish the number of in vivo tests.
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The aim of the present review was to evaluate the use-
fulness of using bovine and porcine IVM/IVF as model
for reprotoxicity studies. For this, we address reproductive
toxins and toxicants and their main effects on female fertil-
ity focusing on in vitrooocyte maturation and fertilization.
Moreover, the use of oocytes from cattle and pig provides
insight on the possibilities to evaluate chemicals on
the in vitro oocyte maturation, fertilization and early em-
bryonic development (preimplantation stage) as a model
for human.

Methods

The present review has been prepared based on a survey
of data available in PubMed (1998 to June 2014), from
which non-English manuscripts were excluded. The
search terms were “oocyte”, “in vitro maturation”, “in vitro
fertilization” and “toxicology”, and two independent per-
sons analyzed the data in the papers. Only studies indicat-
ing experimental procedures applying bovine and porcine
cells as in vitro models were considered. Data from mice
and human were also considered to compare with the
bovine and porcine in vitro data. Most human data are
from women submitted to ART procedures due to fertility
problems. Review papers were used solely to support our
introduction and discussion sections.

Oocyte maturation, fertilization and embryo
development: species differences
Oogenesis is an extremely specialized process and, de-
pending on the species, the formation of a mature oocyte
from the initial oocyte enclosed in dormant primordial
follicles is completed in several weeks, as in mice [23,24],
or several months as in bovine, porcine and human
[25-27]. Ovarian folliculogenesis is not detailed here, as it
is well described in some recent reviews [28,29]. When an
oocyte is fully grown, it is capable of resuming meiosis,
but further follicle growth is necessary to deliver an oocyte
that will mature properly and give rise to an embryo after
fertilization. As means of toxicological research, this is a
unique event because (i) apart from that it is completed in
a relatively short period of time, 14 hours in mice to
44 hours in sows, cytoplasmic and nuclear maturation re-
quire dynamic interactions that will reflect the success of
fertilization [30], (ii) species-specific differences have been
described during chromatin configuration at germinal
vesicle stages [31,32], and (iii) the maturation process dif-
fers among mammalian species. For example, protein syn-
thesis is required for germinal vesicle breakdown (GVBD)
in cow [33], pig [34] and human [35], but not in mice
[36]. More details on the differences between large mam-
mals and laboratory animals are available in a review from
Bilodeau-Goeseels [37].

In general, after ovulation, the mature oocyte is able to
be fertilized and will give rise to an embryo after a series
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of coordinated processes in both sperm and oocyte:
spermatozoa binding to the zona pellucida, an acrosome
reaction which gives the ability to the spermatozoa to
penetrate the zona pellucida, binding of the spermato-
zoa to the plasma membrane leading to membrane
depolarization and Ca®** dependent events that include
cortical granule exocytosis, cell cycle resumption with
concomitant decreases in maturation promoting factor
(MPF) and mitogen-activated protein (MAP) kinase ac-
tivities, and recruitment of maternal mRNAs. After
zygote formation, depending on the species, a defined
number of cellular divisions take place under control of
maternal mRNAs, where after embryo development will
be taken over by mRNAs transcribed from the embryonic
genome. Embryos with insufficient embryonic DNA tran-
scription will cease development. Parallel to these cellular
divisions, from the zygote towards the morula/blastocyst
stage the embryonic genome will be demethylated and
thereafter be remethylated shortly before implantation. This
process of DNA methylation is indispensable for proper
embryo development and protects the embryo from prema-
ture death in utero [38,39].

Although the oocyte has conserved developmental
pathways throughout evolution, phylogenetic analysis of
proteins that are involved with fertilization or embryonic
development revealed that human oocytes are more
closely related in this respect to cow oocytes than mouse
oocytes [40]. Figure 1 depicts the main similarities
among murine, bovine and porcine model when com-
pared to human. For example, oocyte diameter, the time
to reach the 2-cell stage, blastocysts or hatching is
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similar between human, porcine and bovine, but is
shorter in mice. Moreover, the time period of oocyte
maturation and initial embryo development is very simi-
lar when human and bovine are compared. When the
developmental stage of embryonic genome activation is
observed, then human is more similar to pigs than to
cattle or mice [41-43]. The morphological similarity be-
tween oocytes from women and mice is related to the
cellular opacity. In these species, oocytes are translucent,
while oocytes from cows are dark and from sows are
very dark, due to the accumulation of lipid vesicles in
the ooplasm [44]. Even though the concentration of fatty
acids differ between the oocytes of the afore mentioned
species, their composition is similar between these gam-
etes [45,46]. Lipids stored in the oocyte will function as
energy source during oocyte maturation but used in a
less extent during embryo development [47]. The role
of the large lipid content throughout porcine embryo
development remains unknown, as lipid removal from
cleavage stage embryos does not seem to affect their
further development to the blastocyst stage [48]. Despite
of difference in oxygen consumption between bovine,
mouse and porcine embryos, at the morula stage, a
sharp rise of metabolic activity is recorded in all three
species [44]. Murine oocytes have low amounts of fatty
acids and are therefore more glucose dependent for em-
bryo development than bovine or porcine oocytes [49].
DNA methylation results from the activity of DNA
methyltransferases (DNMTs) and these proteins show a
greater degree of structural similarity between human
and bovine than between human and mouse [50-53].
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Figure 1 Main differences between murine, porcine, bovine and human oocyte size at maturation, time to maturation, early embryo
development and embryonic genome activation (EGA). Color intensity of oocytes and embryos refers to lipid density. Mean size of oocytes at
maturation are presented in proportion (mice ~80 um). Average time periods of maturation and embryo development after onset of fertilization
are illustrated by block arrows: oocyte maturation in hours (green arrows), transition from zygote to two-cells stage in hours (light purple arrows),
transition of two-cells to blastocyst stage in days (purple arrows), and time to hatched blastocysts in days (dark purple arrows). Data were collected
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Oocyte maturation, fertilization and subsequent em-
bryo development involve multifaceted changes that are
not easily mimicked by cell lines. Besides this, there are
chronological and biochemical differences between labora-
tory and domestic mammals during the course of oocyte
maturation and development of the embryo. Considering
the feasibility to obtain ovaries from pigs and cows, the
readily efficient protocols available from oocyte maturation
to embryo production in vitro, as well as physiological and
phylogenetic similarities, the use of these animal models
in reproductive toxicology is encouraged [17,73,74]. La-
boratory animals remain valuable research tools par-
ticularly humanized mice, ie. those carrying functioning
human genes, cell, tissues or organs [75]. However, oocyte
maturation, fertilization and embryo development in mice
cannot easily be genetically changed to be humanized;
translational studies in these rodents will not always
reflect the effects in human when female reproduction
is evaluated.

Exposure to toxic compounds in relation to reproductive
failure

People are constantly exposed to toxic compounds
present in the environment, food, drugs, and for instance
cosmetics or due to occupational exposure. Exposure
to several chemicals may also vary between species. For
example, pigs are environmentally exposed to polychlori-
nated biphenyl (PCB) and dioxins, which can accumulate
in fatty tissues and meat [76]. Therefore, human contam-
ination is also related to food consumption and, as accu-
mulated in fat, risks of exposure to new-born babies
during breast-feeding is evident [77]. Human antidepres-
sants, on the other hand, have been described as causing
reproductive disorders in mice [78], while no clear effects
on human fertility could be detected [79,80]. However,
such drugs can become important environmental repro-
ductive toxicants in the aquatic environment [81]. Phtha-
lates are environmental contaminants also used in the
coating of oral medications, making the drug as a toxicant
exposure source [82]. Another agent, acrylamide, is known
as an occupational toxicant [17]. However, this compound
can also be produced during food processing [83], includ-
ing baby food and infant formulas [84], and can pass
through the placenta thereby affecting fetal growth [85].
Moreover, as shown in bovine [17], acrylamide affects
oocyte maturation. In the present review, we divided the
toxic compounds in five main categories (environmental,
food, drugs, cosmetics or occupational) for didactical rea-
sons. For details on specific toxic compounds, Table 1 is
given as reference.

Environmental toxic compounds
Although the use of some agricultural fertilizers, pesti-
cides or animal parasitical solutions has been banned or
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diminished in many countries, the ability of these sub-
stances to persist in the environment (soil and water
resources) presents a threat to human and animal health.
This means that the negative effect of these compounds
may be present longer in a population than in the environ-
ment. Moreover, for every toxic compound that has been
banned or diminished, one or even more hazardous sub-
stances have come back due to adaptations in the produc-
tion of new so-called less harmful metabolites. Therefore,
the final threat may even increase instead of decrease or
stabilize. For instance, atrazine is a 21st century herbicide
which also acts as an endocrine disruptor [115] and its
metabolites such as desethylatrazine [116] and cyanuric
acid [117] might persist in the environment. In human, a
survey quantifying biomarkers in maternal and umbil-
ical cord serum to detect in utero exposure to pesticides
showed that those agricultural contaminants affect off-
spring outcome and development [118]. Many repro-
ductive dysfunctions are likely caused by environmental
toxicants. To exclude this source of contamination is very
difficult indeed. However, systematic studies detecting
the main harmful compounds are needed to define alter-
natives to substitute or limit their use. From the agricultural
chemicals, carbedazim has been identified as a poten-
tial endocrine disruptor as shown in a human ovarian
granulosa-like tumor cell line [119]. Chlorinated pesti-
cides like dichlorodiphenyltrichloroethane (DDT) and
hexachlorobenzene (HCB) in sera from women submitted
to IVF have been related to impaired embryo implantation
[120]. Methoxychlor, a substitute for DDT, is a pesticide
linked to female reproductive dysfunction by hyperme-
thylation in estrogen receptors, and phosphatase and
tensin homolog (PTEN) signaling, which is involved
in follicular activation [121].

Plasticizers, mostly phthalates used to increase the flexi-
bility of materials like construction products, cosmetics,
medical devices or to coat medication, encompass another
important group of environmental contaminants. These
chemicals do not accumulate in human follicular fluid
[122]. However, prenatal exposure to phthalates may lead
to estrogenic or anti-androgenic effects in girls at pu-
bertal age affecting uterine volume [123]. It can be ex-
pected that impaired steroidogenesis will lead to impaired
oocyte development.

PCBs and dioxins can disturb female fertility [124] and
embryo development [125,126]. Exposure in utero to
these compounds delayed reproductive development es-
pecially in girls [127]. There is heightened investment as
well as apprehension on nanoparticle research. For ex-
ample, nanoparticles containing silver are able to inhibit
porcine oocyte maturation [94], but knowledge on the
possible effects and endocrine interactions on human
reproduction is limited [128]. The use of in vitro models
will help to predict the risks of these compounds on



Table 1 Toxic compounds tested in vitro using bovine and porcine models

Environmental Species Exposure Cumulus Oocytes Embryos
Bovine Porcine IVM IVF IVC Viability Expansion Viability MIl Fertilization/ 2-4 cells Blast N nuclei Ploidy
Activation
Anabasine [86] 86 86 86
Atrazine [17,87,38] 17,87 88 17,87,88 87 17,88 17,88 87 87
Benzo(a)pyrene [15] 15 15 15 15 15 15
Benzyl butyl phthalate [89] 89 89 89 89
Cadmium [15,17,86] 1517 86 15,17,86 15 1517 86 1517 15
Carbedazim [15] 15 15 15 15 15 15
4-Chloro-3-methyl phenol [89] 89 89 89 89
Cotinine [17,86] 17 86 17,86 17 86 17
Cycloheximide [15,17] 1517 1517 15 1517 1517 15
DEHP [89,90] 90 89 89,90 89 89,90 90 90
Diazinon [88,91] 8891 8891 91 91 88 91 88 91 91 91
DDT [92] 92 92 92 92 92 92 92
Fenoxaprop-ethyl [88] 88 88 88 88
Hexachlorocyclohexane [92] 92 92 92 92 92 92 92
Lindane [15] 15 15 15 15 15 15
Malathion [88,91] 8891 8891 91 91 88 91 88 9 91 91
Methoxychlor [92] 92 92 92 92 92 92 92
MEHP [17,90,93] 17,9093 17,9093 17 93 17,90,93 90 90
Nanoparticles Au-Ag [94] 94 94 94 94
Nicotine [17,86,95,96] 179596 86 17869596 95 95 17 86,95 17,9596 95 95,96 95,96 9 96
PCB mixtures [19,97-102] 97-99 19,100-102 19,97-101 101 102 1999,100 19,100 19 19,97-100 19,9798, 100,101  19,97,98,101 19,97,98, 98,101, 102
100-102
4-tert-octylphenol [103] 103 103 103 103 103 103 103
Food
Bisphenol A [89] 89 89 89 89
a-Chaconine [104] 104 104 104 104 104 104
Daidzein [105] 105 105 105 105 105 105 105
Deoxynivalenol [106-108] 106-108 106-108 106 108 108 106-108 108 107,108 107,708 107,108 107,108
Flavanones [109] 109 109 109 109 109 109 109
Genistein [15] 15 15 15 15 15 15
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Table 1 Toxic compounds tested in vitro using bovine and porcine models (Continued)

a-Solanine [104]
Solanidine-N-oxide [104]
Zearelanone [107,110,111]
a-zearalenol [106,107,112]
{-zearalenol [106,107]
Drugs

Busulfan [15]
Diethylstilbestro | [15,17]
17@3-Estradiol [17,103]
lonomycin [15]
Ketoconazole [15]
Methy! acetoacetate [15]
Mifepristone [15]
Nocodazole [15,17]
Okadaic acid [95]
Piperazine [17]
Swainsonine [113]

Taxol [95]

Cosmetics

Butylparaben [15]
9-cis-Retinoic acid [114]
Retinoic acid [17]
Occupational

Acrylamide [17]

104

104

110,111 107
106,107, 112
106,107

15
15,17
17,103
15

15

15

15
15,17

17

104 104 104
104 104 104
107,110,111

106,107 106
15 15
1517 15
17,103

15 15

15 15

15 15

15 15
1517 15

95

17

113 13 113
95

15 15

114

17

17

15
1517
17
15
15
15
15
1517
95

95

17

107,110, 111
106, 107
106,107

15
15,17
17,103
15

15

15

15
15,17
95

17

95

17

15
15
103
15
15
15
15
15

104
104
107,110
107,112
107

103

13

114

107 107
107,112 107
107 107
103
113

DDT: Dichlorodiphenyltrichloroethane; DEHP: Di-(2-ethylhexyl) phthalate; MEHP: Mono-(2-ethylhexyl) phthalate; PCB: polychlorinated biphenyl.
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oocyte maturation and subsequent fertilization and
embryo development.

Nicotine and other chemicals present in cigarette smoke,
e.g. anabasine, benzo(a)pyrene, cadmium and cotidine, are
environmental contaminants that have not only been dem-
onstrated to cause neoplasia but also reproductive failure.
Bordel et al. [129] have shown that nicotine induces apop-
tosis in ovarian follicles. Different from phthalates, che-
micals present in cigarette smoke can accumulate in
follicular fluid. The main tobacco related compounds
benzo(a)pyrene, cadmium, and cotidine for instance were
found in human follicular fluid and related to fertility
failure [130,131]. Cigarette smoke also leads to reduced
concentrations of anti-Miillerian hormone (AMH) in fol-
licular fluid, which may negatively impact oocyte develop-
ment [132]. More recently, it has been reported that in
utero exposure to cigarette smoke can impair endocrine
signaling in female fetuses and can inhibit the progression
of early ovarian follicle development [133]. Furthermore
cotinine, a nicotine metabolite, has been detected in fol-
licular fluid from passive smokers [134,135], which is a
warning also for non-smoker women constantly exposed
to cigarette smoke.

Food toxic compounds
Together with environmental toxic compounds, expos-
ure to food contaminants can also affect animal and hu-
man reproductive function. Food toxic agents can be of
natural origin, as mycotoxins, and can be synthetic, for
instance BPA. While BPA is known as an endocrine dis-
ruptor, mycotoxins have the ability to act either as endo-
crine disruptors or as endocrine active substances [136].
Mycotoxins like deoxynivalenol (DON), zearalenone
(ZEA) and its metabolites (alpha- and beta-zearalenol) can
cause reproductive failure. Although DON has been asso-
ciated with gastroenteritis [137], there are reports on the
reproductive effect of this mycotoxin in domestic ani-
mals [138]. Abundant knowledge is available on the
estrogenic effect of ZEA in human and domestic ani-
mals [136]. However, there are many of the so-called
emerging mycotoxins, e.g. enniatins, alternariol and beau-
verecin, that need to be screened on their action on female
reproduction. For example, it is known that alternariol
at high concentrations impairs progesterone synthesis
in porcine granulosa cells [139]. Beauvericin might be an-
other potential mycotoxin with reproductive effects since
recently this mycotoxin was advocated to be an antitumor
candidate due to its role in the inhibition of MAP kinase
phosphorilation [140]. Although BPA does not accumulate
in follicular fluid [122], it negatively affects human oocyte
maturation iz vitro by disturbing spindle architecture and
chromosome organization [141]. However, there is a lack
of data revealing if BPA affects human oviduct, placenta
and pubertal development [142].
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Alpha-chaconine and alpha-solanine are natural gly-
coalkaloids, natural pesticides, found in potatoes. These
secondary metabolites are produced by potatoes when
threatened by pathogens or insects. This means that injur-
ies to some vegetables like potatoes can pose a risk to hu-
man health [143]. Besides this, most information related
to female reproduction, however, is limited to studies in
rats [144] and mice [145]. Phytoestrogens, with isoflavones
and flavanones as the most studied are also investigated
for their effects on human reproduction. Genistein is
found in soybeans. Although isoflavones like genistein do
not impair murine oocyte maturation [146], this phyto-
estrogen, as well as daidzein, can affect the development
of mice reproductive organs [147]. It has been shown also
that although daidzein does not affect porcine oocyte mat-
uration, it is able to disturb progesterone secretion by cu-
mulus cells [105]. Recently, Solak et al. [109] also showed
that naringenin and 8-prenyl-naringenin impaired porcine
oocyte maturation by different mechanisms. Besides these
solid evidences of the risks of phytoestrogens, and the
fact that human consumption of these compounds is
high, epidemiological data in human are scarce and more
studies using animal models are crucial as every day more
phytoestrogens are recognized or included as therapeutic
compounds [148].

In a sophisticated cohort study in France, Chan-Hon-Tong
et al. [149] acquired detailed information on dietary expos-
ure to potential contaminants in women before pregnancy
and at the third trimester of pregnancy. Although expos-
ure before pregnancy appeared higher than at the end of
pregnancy, the fetus still can be exposed to contaminants
like mycotoxins, acrylamide and PCBs. Besides, exposure
before pregnancy may also impair the ability of a woman
to conceive naturally, thus requiring ART.

Drugs, cosmetics and occupational toxic compounds
Research on the endocrine effect of drugs, cosmetics and
occupational toxic compounds is available but more lim-
ited. Probably because some adverse effects are already ex-
pected, like the use of antineoplasic drugs, or due the fact
that exposure to occupational toxicants is already under
strict regulation. However, in some developing countries
children are constantly exposed to parasites, requiring a
routinely based administration of drugs such as antifun-
gals, which may act also as endocrine disruptors [150].
Maternal anemia or risks of perinatal death can be caused
by helminthic infestation, which must be treated with an-
thelmintic drugs. But, such drugs may also have embryo-
toxic effects [151].

In humans a relatively constant exposure to drugs is
inevitable, either by choice (contraceptives) or to treat
diseases (chemotherapeutic, antiparasitic, antidepressants
or antiepileptic agents) which, after chronic use, may
affect fertility or embryo development [152-154]. It is well



Santos et al. Reproductive Biology and Endocrinology 2014, 12:117
http://www.rbej.com/content/12/1/117

known that many chemotherapeutic agents, particularly
alkylating agents, impair fertility not because of their cyto-
toxic characteristics but also by leading to premature
ovarian failure or insufficiency, affecting oocyte reserve,
activation and growth [155]. Other drugs like busulfan, di-
ethylstilbestrol, 17f3-estradiol, mifepristone, ketoconazole,
piperazine, methyl acetoacetate, okadaic acid and taxol are
endocrine disruptors. Although in vitro data in bovine and
porcine show the risks that these compounds bring to oo-
cyte maturation and fertilization, little is known about
their effect on human oocyte maturation and fertilization.

Cosmetics bring concerns because of their increase in
the market and augmented use by humans, including
children. Among them, compounds present in UV-filters
like benzophenone are endocrine disruptors that have
been detected in human serum [156]. Topical use of ret-
inoic acid has been included as a hazard for its terato-
genic risk, but such exposure is too low when compared
to the oral administration of vitamin A [157]. Besides,
Tahaei et al. [158] showed that treatment of murine oo-
cyte with retinoic acid during IVM has positive impact
on maturation rate and subsequent embryo development
after IVF.

Also, occupational toxicants have been analyzed for
effects on reproduction. Acrylamide has been character-
ized as an occupational toxicant, once it is used to
synthesize polyacrylamides, one of the compounds used
in gels for electrophoresis. Due to severe legislation to
protect researchers and analysts who work with this
compound, most risks are avoided. However, this com-
pound still harms human health since it is also a food
toxicant. Dimethylene glycol monobutyl ether (DGBE) is
present in latex paints, but is not toxic for rats after
10 weeks of exposure [159]. However, humans who by
their profession may be exposed to these compounds for
years might be affected. Pesticides, including insecticides
and rodenticides, also act as occupational toxicants, affect-
ing adults and children [160]. Even at low concentrations,
chronic exposure to these compounds affects endocrine
activity [161].

Final remarks

Many couples apply to ART because of fertility problems
and more than one fifth of the causes of sub/infertility
in female are unknown. There is compelling evidence
that fertility problems are related to the exposure to dif-
ferent sources of contaminants, among them dietary and
environmental appearing as a great concern. Some of the
identified chemicals can affect the oocyte already during
maturation. If the oocyte does not follow an apoptotic
pathway, there is still the risk that fertilization and subse-
quent embryo development will be somehow affected.
Furthermore, when ART is necessary, patients should
be advised about the environmental and dietary contaminants
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not only because of metabolic diseases, but also to prevent
exposure to hazardous chemicals.

To identify the effect of such dietary and environmental
compounds, cell lines have been used as an important
screening tool. However, a cell line will not always mimic
gametes during a critical phase of maturation, which re-
quires specific biochemical changes. It is possible to apply
reliable and more complex screening methods, as well as
decrease the number of laboratory animals, by using bo-
vine or porcine as models for IVM, IVF and embryo pro-
duction in vitro. Obviously the bovine/porcine model will
not replace rapid and massive screenings with cell lines,
and cannot completely eliminate in vivo studies with ro-
dents. Although, the research material will be obtained
from healthy animals that entered the food chain and no
extra facilities are necessary to house animals, bovine and
porcine IVM/IVF models have certain disadvantages that
should be considered when applied to test potential toxic
compounds. For instance, the origin of slaughterhouse-
derived materials (ovaries) is often unknown such as
age, reproductive status, possible reproductive disorders
or stressful conditions. To overcome this, Ovum Pick-Up
(OPU) from donors with known background can provide
a solution. Even though cattle oocyte development is
rather similar to that of humans, in iz vivo studies the por-
cine appears as a good model for transgenerational research
since it is a monogastric species with a gastrointestinal
tract similar to that of humans. Overweighing supposed
risks of certain chemicals should be avoided. However, hu-
man beings are daily exposed to different contaminants.
Even though exposure may occur at extremely low con-
centrations of each contaminant, chronic multi-exposure
should be taken into account, and epigenetic changes
affecting embryo development must be considered.
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