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Abstract

Background: L-carnitine-mediated beta-oxidation of fatty acids has a well established role in energy supply of
oocytes and embryos. Disturbed carnitine metabolism may impair the reproductive potential in IVF and can serve
as a biomarker of pregnancy outcome.

Methods: Our study was performed between March 24, 2011 and May 9, 2011. We performed 44 unselected IVF
cycles, (aged 23–40 years (mean: 32.3+/−5.1 years) and had BMI of 17.3-34.7 (mean: 23.80+/−4.9). Samples were also
obtained from 18 healthy women of similar age admitted for minor elective surgery to serve as control for plasma
carnitine profile. Serum and follicular fluid (FF) free carnitine (FC) and 20 major acylcarnitines (ACs) were measured
by ESI/MS/MS method.

Results: Serum FC and AC levels in IVF patients were comparable to those in healthy control women. In FF FC and
short-chain AC concentrations were similar to those in maternal serum, however, the levels of medium-chain, and
long-chain AC esters were markedly reduced (p<0.05). The serum to FF ratio of individual carnitine compounds
increased progressively with increasing carbon chain length of AC esters (p<0.05). There was a marked reduction in
total carnitine, FC and AC levels of serum and FF in patients with oocyte number of >9 and/or with embryo
number of >6 as compared to the respective values of <9 and/or <6 (p<0.05).

Conclusions: In IVF patients with better reproductive potential the carnitine/AC pathway appears to be
upregulated that may result in excess carintine consumption and relative depletion of carnitine pool. Consequently,
IVF patients may benefit from carnitine supplementation.
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Background
Normal oocyte maturation, fertility and embryo develop-
ment is closely associated with energy metabolism [1-4].
The prominent role of fatty acids in energy supply to ac-
quire developmental competence of oocyte and early
embryos has been established [5-8]. However, growing
body of evidences suggests, that non-esterified fatty acid
supply in excess of its metabolic utilization results in
fatty acid accumulation that may compromise oocyte
maturation and developmental capacity of early embryo
[9-11]. Interestingly, when free fatty acid composition of
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reproduction in any medium, provided the or
serum and/or follicular fluid (FF) was analyzed it became
apparent that not isolated individual fatty acids, but ra-
ther physiologically relevant ratios and /or combinations
of fatty acids cause significant dysregulation of cellular
processes [8].
Free fatty acids are metabolised via beta-oxidation that

is mediated by L-carnitine. L-carnitine is present in free
and esterified forms in tissues and body fluids. It has
multiple metabolic functions including transport of
long-chain fatty acids into the mitochondria for beta-
oxidation, transfer of short- and medium-chain acyl
groups from the peroxisome to mitochondria, regulation
of intracellular acyl-CoA/free CoA ratio and export of
toxic acyl residues from the mitochondria [12-17]. Accu-
mulation of acylcarnitines, (AC)s therefore is regarded
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as indicative of mitochondrial dysfunction and impaired
cellular fatty acid metabolism [18]. The importance of L-
carnitine in improving oocyte quality and reproductive
performance has been demonstrated in animal and hu-
man studies [19-24].
On the basis of these observations it was intriguing to

investigate further the relationship between carnitine
profile and reproductive potential. In women who wants
to conceive a child we can only analyze the serum carni-
tine profile and no FF samplaes are available, therefore
patients receiving IVF can be an observational model.
Also testing whether L-carnitine or individual carnitine
esters alone or in combination can serve as potential
biomarkers of pregnancy outcome.
The present study was conducted to determine the

patterns of free carnitine (FC) and AC esters in serum
and FF in women undergoing IVF. Attempts were also
made to assess the properties of blood-follicular barrier
by quantifying simultaneously the short-, medium- and
long-chain ACs in the two distinct fluid compartments.
In addition, composition of carnitine pools was related
to indices of reproductive potential such as number of
oocytes and that of viable embryos.

Methods
Ethical approval
The study was reviewed and approved by the Ethics
Committee of the University of Pécs. Signed informed
consent was obtained from all patients who participated
in the study. The investigation conforms to the princi-
ples outlined in the Declaration of Helsinki.

Patients
Our case–control study was performed between March
24, 2011 and May 9, 2011 in the Assisted Reproduction
Unit, Department of Obstetrics and Gynecology, Univer-
sity of Pécs, Hungary. In this period we performed 44
unselected IVF cycles, in 42 cases we made transvaginal
ultrasound guided aspiration of FF. In the remaining 2
cycles the stimulation was unsuccessful. The patients
were aged 23–40 years (mean: 32.3±5.1 years) and had
BMI of 17.3-34.7 (mean: 23.80±4.9).
The patients were recruited into this study according

to the date of the procedure, so it was an unselected
population. They presented with the following main in-
fertility diagnosis: male factors (14, 33.3%), damaged or
blocked Fallopian tubes (10, 23.8%), severe endometri-
osis (7, 16.7%) and unexplained infertility (11, 26.2%).
These latter patients experienced six unsuccessful intra-
uterine inseminations previously.
Among the patients there were no diabetes mellitus

(type I and II), or reduced glucose tolerance.
Superovulation treatment was started after the neces-

sary examinations, such as cervical smear, serum
hormone measurements (follicular stimulating and
luteinizing hormones /FSH, LH/, prolactin, estradiol,
progesterone, testosterone, thyroid-stimulating hor-
mone) on the 3rd and 21st days of the unstimulated cy-
cles, human immune-deficiency virus and hepatitis-B
surface antigen screening, hysteroscopy and andrologic
examination. Patient enrollment into IVF procedure was
approved by two independent physicians.

Control patients
During the study period samples were also obtained
from 18 healthy women aged 25–40 years (mean: 33.4±5.2
years) and had BMI of 19.4-32.6 (mean: 25.01±4.7) admit-
ted for minor elective surgery to serve as control for
plasma carnitine profile.

Controlled ovarian hyperstimulation
Inducing IVF GnRh agonist triptorelin (Gonapeptyl;
Ferring®, Germany) was used in a long or short protocol,
and the stimulation was performed with individual dos-
ages of rFSH (Gonal-F; Serono® Aubonne, Switzerland),
varying from 100 to 225 IU per day depending on the
follicular maturation. The starting dose was adapted
according to the BMI and the age. For patients with a
previously known low response it was increased to a
maximum dose of 300–350 IU daily. The follicular mat-
uration was determined by ultrasound examination from
the 6th day of the cycle, every other day. We changed
the amount of the administered gonadotropins individu-
ally according to the size of the follicles. Ovulation was
induced by injection of 250 μg of hCG (Ovitrelle;
Serono®Aubonne, Switzerland) when at least two follicles
exceeded 17 mm in diameter, and aspiration of FF was
performed 36 hours later by ultrasonography-guided
transvaginal puncture under routine intravenous sedation.

Collection of follicular fluid
The oocyte collection was performed using Sonoace
6000C two dimensional real time ultrasound scanner
equipped with 4–8 MHz endovaginal transducer. The
oocyte collection was performed in G-MOPS™ medium
(Vitrolife, Göteborg, Sweden).
FF from individual follicles was aspirated and after

collecting the oocytes the fluid was centrifuged for 10
min at 1500 r.p.m. and the supernatants were frozen and
stored at −70°C for future analysis.

Fertilization methods
We performed the fertilization with intracytoplasmatic
sperm injection (ICSI) depending on the andrological
status (sperm count less than 15M/ml), the maternal age
(> 35) and the number of the previous IVF cycles the pa-
tient had before (>2). The oocytes selected for ICSI were
denuded with hyaluronidase and were assessed for



Table 1 Carnitine ester concentrations of serum and follicular fluids μmol/L [median (interquartile range)]

Analytes IVF patients Controls

Serum Follicular fluid Serum

Median (IQR) N=42 Median (IQR) N=42 Median (IQR) N=18

free carnitine 28.056 (5.358) 27.880 (5.878) 27.416 (5.664)

Total acyl-carnitine 9.088 (1.727) 7.613 (1.887) 8.193 (1.413)

Total carnitine 36.309 (6.382) 35.895 (7.780) 36.298 (5.294)

AC/FC ratio 0.320 (0.079) 0.279 (0.049) 0.294 (0.071)

Total short-chain acylcarnitines 7.827 (1.505) 7.073 (1.760) 7.055 (1.500)

Total medium-chain acylcarnitine 0.688 (0.249) 0.307 (0.103) # 0.600 (0.228)

Total long-chain acylcarnitine 0.343 (0.069) 0.140 (0.033) # 0.338 (0.110)

Short chain acylcarnitines

C2-carnitine 7.470 (1.300) 6.559 (1.740) 6.504 (1.514)

C3-carnitine 0.183 (0.073)* 0.204 (0.068) # 0.263 (0.090)

C4-carnitine 0.143 (0.058)* 0.160 (0.073) 0.180 (0.088)

C5-carnitine 0.053 (0.027) 0.052 (0.013) 0.050 (0.020)

C5-OH carnitine 0.025 (0.012)* 0.020 (0.007) # 0.033 (0.014)

Medium chain acylcarnitines

C6-carnitine 0.027 (0.010) 0.020 (0.007) # 0.027 (0.007)

C8-carnitine 0.098 (0.043) 0.053 (0.024) # 0.097 (0.0459

C8:1-carnitine 0.037 (0.020) 0.030 (0.020) 0.038 (0.016)

C10-carnitine 0.215 (0.120) 0.070 (0.029) # 0.187 (0.087)

C10:1-carnitine 0.154 (0.061) 0.070 (0.030) # 0.150 (0.040)

C12-carnitine 0.057 (0.023) 0.020 (0.006) # 0.050 (0.023)

C12:1-carnitine 0.066 (0.021) 0.020 (0.010) # 0.063 (0.019)

Long chain acylcarnitines

C14-carnitine 0.023 (0.007) 0.010 (0.003) # 0.022 (0.011)

C14:1-carnitine 0.053 (0.026)* 0.020 (0.007) # 0.045 (0.016)

C16-carnitine 0.087 (0.029) 0.040 (0.013) # 0.092 (0.039)

C18-carnitine 0.032 (0.013) 0.013 (0.007) # 0.037 (0.010)

C18:1-carnitine 0.092 (0.032) 0.033 (0.013) # 0.080 (0.032)

C18:2-carnitine 0.053 (0.020) 0.020 (0.007) # 0.055 (0.027)

Dicarboxylic acylcarnitines

C4DC-carnitine 0.030 (0.013) 0.023 (0.010) # 0.028 (0.005)

C5DC-carnitine 0.086 (0.040) 0.052 (0.017) # 0.082 (0.025)

In the control group no follicular samples were avaiable.
*p<0.05 compared to control.
# p<0.05 compared to control.
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maturity. Only metaphase II oocytes, identified by the
presence of the first polar body, were chosen for
fertilization. ICSI was performed 3–6 h after oocyte recov-
ery in the medium G-MOPS™. The remained oocytes were
fertilized with the conventional IVF method in a bicar-
bonate buffered medium (G-IVF™, Vitrolife®, Göteborg,
Sweden). Fertilization was assessed 24 hours later in the
medium G-1™ v5 (Vitrolife®, Göteborg, Sweden), the pres-
ence of two pronucleus signed the fertilization.
Embryo transfers were done 3–5 days after the oocyte
retrieval. From day 3 to blastocyst stage we use the
medium G-2™v5 (Vitrolife®, Göteborg, Sweden). According
to the patient request we transferred one, two or three
embryos. Cryopreservation of the remaining embryos was
performed at this stage according to the Hungarian law.
Progestogen supplementation was provided using 300 mg
of progesterone 3 times a day (Utrogestan; Lab.Besins
International S.A.®, Paris, France).



Figure 1 Serum to follicular fluid ratio of individual acylcarnitines. Serum to follicular fluid ratio of individual acylcarnitines as a function of
the carbon chain length of acylesters.
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To evaluate the success of the treatment transvaginal
ultrasound examination was performed 21 days after the
embryo transfer to detect gestational sac.

Measurements of FC and ACs
FC and all the ACs were determined by butyl-ester
forms using isotope dilution mass spectrometry (MS)
method in a Micromass Quattro Ultima (Manchester,
UK) ESI triple-quadrupole mass spectrometer coupled
with a Waters 2795 HPLC (Milford, MA, USA) system
for sample introduction. For sample preparation 10 μl of
serum or FF was used and a previously described pro-
cedure was followed [25]. During the ESI/MS/MS ana-
lysis FC and ACs were measured by positive precursor
ion scan of m/z 85, with a scan range of m/z: 200?550.
The applied capillary voltage, cone voltage and collision
energy were 2.54 kV, 55 V and 26 eV, respectively.
Our mass spectrometry facility is a registered partici-

pant in the International Newborn Screening Quality
Figure 2 Serum to follicular fluid ratio of the groups of acylcarnitines
long-chain acylcarnitines as a function of the carbon chain length of acylca
Assurance Program organized by the Center for Disease
Control and Prevention, USA [26].
Routine hormone measurements were performed by using

commercially available immunoassay kits. FSH and LH were
measured with the electrochemiluminescent assay of Roche
Ltd. (Elecsys 2010), while beta-HCG was measured with
radioimmunoassay (Laborexpert, Hungary).

Statistical analysis
All statistical analyses were performed using SPSS, ver-
sion 20 (SPSS Inc., Chicago, IL, USA). Normality of data
was evaluated by Kolmogorov-Smirnov test. Variables
are presented as median and interquartile range. Differ-
ences in carnitine ester concentrations between patient
and control groups were analysed using the Kruskal-
Wallis test. If changes were found to be significant,
Mann–Whitney U test were performed. Data binning
was applied in the case of oocyte and embryo number.
This process is a data pre-processing technique used to
. Serum to follicular fluid ratio of the groups of short-, medium-, and
rnitines.



Table 2 Correlation analysis between carnitine profiles of
serum and follicular fluid (n= 42)

Analytes Correlation coefficient p

free carnitine 0.868 <0.001

Total acyl-carnitine 0.368 0.008

Total carnitine 0.775 <0.001

Total short-chain acylcarnitines 0.385 0.006

Total medium-chain acylcarnitine 0.487 0.001

Total long-chain acylcarnitine 0.366 0.009

Short chain acylcarnitines

C2-carnitine 0.394 0.005

C3-carnitine 0.683 <0.001

C4-carnitine 0.529 <0.001

C5-carnitine 0.475 <0.001

C5-OH carnitine 0.209 0.092

Medium chain acylcarnitines

C6-carnitine 0.433 0.002

C8-carnitine 0.607 <0.001

C8:1-carnitine 0.790 <0.001

C10-carnitine 0.590 <0.001

C10:1-carnitine 0.532 <0.001

C12-carnitine 0.225 0.076

C12:1-carnitine 0.218 0.083

Long chain acylcarnitines

C14-carnitine −0.041 0.398

C14:1-carnitine 0.185 0.120

C16-carnitine 0.240 0.063

C18-carnitine −0.140 0.188

C18:1-carnitine 0.385 0.006

C18:2-carnitine 0.482 0.001

Dicarboxylic acylcarnitines

C4DC-carnitine 0.251 0.055

C5DC-carnitine 0.388 0.006
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reduce the effects of minor observation errors. Optimal
binning thresholds, resulting into harmonic groups were
offered by the statistical program. For correlation
analysis between serum and follicular fluid values, the
non-parametric Spearman’s bivariate test was used. A
difference of p<0.05 was considered as significant.

Results
Carnitine profile measurements
Serum and FF FC, individual and total ACs, as well
as total carnitine concentrations of patients undergo-
ing IVF are given in Table 1. For comparison the re-
spective serum carnitine values for healthy control
women was also presented. In the control group no
follicular samples were available. As shown 20 distinct
AC esters were detected in the serum and FF samples
and there were no significant differences in serum
carnitine levels between healthy subjects and IVF pa-
tients. However, analysis of FF carnitines revealed,
that only the free and short-chain ACs were similar
to those in maternal serum and the levels of
medium-chain and long-chain AC ester levels were
markedly lower. Accordingly, the serum to FF ratio of
individual carnitine compounds increased progres-
sively as the carbon chain length of carnitine esters
increased (Figures 1 and 2). When FF carnitine profile
was studied as a function of corresponding serum
carnitines, a strong positive correlation was found be-
tween the two variables irrespective of their carbon
chain length. Thus, serum free carnitine, total ACs,
total carnitine, and total-, short-, medium- and long-
chain ACs correlate highly significantly with the re-
spective carnitine values in FF. Analysis of individual
ACs, revealed that serum levels of C5-OH (short-
chain), C12:1 (medium-chain) and C14, C14:1, C16
and C18 (long-chain) do not correlate with those in
FF (Table 2). These observations suggest that FF car-
nitines mostly derive from plasma filtrate and AC es-
ters with shorter carbon chain length more readily
cross the blood/ovarian barrier than ACs with longer
chain length.
Carnitine profile and reproductive potential
The association of serum and FF carnitine status with the
number oocytes in IVF patients is shown in Table 3. It can
be seen that serum FC fraction decreased significantly
(p<0.05), and there was a general tendency to decrease for
each, the short-, the medium-, and long-chain ACs in pa-
tients with binned oocyte number in patients where 9 or
more oocyte were collected. Of the long- chain ACs the de-
crease of C14:1 fraction also proved to be significant
(p<0.05).
Similar pattern of distribution was observed for FF

carnitine compounds. In patients with oocytes of 9 or
more FC (p<0.05) and short-chain ACs (p<0.05) were
significantly reduced, whereas the reduction of total
medium-chain and total long-chain ACs did not reach
statistical significance.
Table 4 compares serum and FF concentrations of FC

and major ACs in IVF patients with binned embryo num-
ber of 6 or less embryo developed with those patients
where more than 6 embryo developed. Higher embryo
number is associated with significantly depressed FC
(p<0.05) and total serum carnitines (p<0.05), albeit the de-
crease of ACs is insignificant (p<0.10), it appears to be
consistent. These findings are mirrored in the carnitine
profile of FF where in addition to the significant decrease
of FC (P<0.05), ACs of various carbon chain length



Table 3 Carnitine profile according to the number of oocytes [μmol/L] [median (interquartile range)]

Serum
oocyte number

Follicular fluid
oocyte number

≤ 9 N=29 >9 N=13 ≤ 9 N=29 >9 N=13

Analytes Median (IQR) Median (IQR) Median (IQR) Median (IQR)

free carnitine 28.667 (6.090) 24.897 (4.137)* 28.768 (4.408) 25.515 (4.307) #

Total acyl-carnitine 9.147 (2.268) 8.767 (0.960) 7.997 (1.825) 6.810 (1.908) #

Total carnitine 36.940 (6.965) 32.869 (4.616)* 37.098 (5.845) 31.622 (6.026) #

AC/FC ratio 0.316 (0.075) 0.345 (0.073) 0.280 (0.0499 0.278 (0.053)

Total short-chain acylcarnitines 7.860 (1.492) 7.787 (1.172) 7.373 (1.8459 6.343 (1.802) #

Total medium-chain acylcarnitine 0.715 (0.257) 0.648 (0.275) 0.313 (0.1209 0.277 (0.065)

Total long-chain acylcarnitine 0.347 (0.060) 0.312 (0.072)* 0.140 (0.027) 0.127 (0.040)

Short chain acylcarnitines

C2-carnitine 7.393 (1.445) 7.470 (1.123) 6.833 (1.622) 5.880 (1.800) #

C3-carnitine 0.185 (0.075) 0.180 (0.063) 0.210 (0.070) 0.177 (0.053) #

C4-carnitine 0.143 (0.058) 0.140 (0.058) 0.170 (0.081) 0.153 (0.033)

C5-carnitine 0.058 (0.025) 0.050 (0.020) 0.053 (0.013) 0.050 (0.010)

C5-OH carnitine 0.023 (0.010) 0.030 (0.010) 0.020 (0.007) 0.020 (0.003)

Medium chain acylcarnitines

C6-carnitine 0.027 (0.013) 0.027 (0.007) 0.020 (0.013) 0.020 (0.003)

C8-carnitine 0.100 (0.037) 0.093 (0.040) 0.060 (0.023) 0.053 (0.027)

C8:1-carnitine 0.035 (0.018) 0.040 (0.028) 0.030 (0.018) 0.030 (0.027)

C10-carnitine 0.215 (0.130) 0.215 (0.098) 0.070 (0.030) 0.055 (0.030) #

C10:1-carnitine 0.160 (0.063) 0.140 (0.033) 0.073 (0.030) 0.070 (0.023)

C12-carnitine 0.060 (0.023) 0.055 (0.018) 0.020 (0.007) 0.020 (0.003)

C12:1-carnitine 0.070 (0.023) 0.057 (0.020) 0.020 (0.012) 0.020 (0.010)

Long chain acylcarnitines

C14-carnitine 0.023 (0.010) 0.020 (0.007) 0.010 (0.003) 0.010 (0.003)

C14:1-carnitine 0.057 (0.023) 0.040 (0.030)* 0.020 (0.010) 0.017 (0.007)

C16-carnitine 0.090 (0.027) 0.080 (0.037) 0.040 (0.007) 0.040 (0.013)

C18-carnitine 0.033 (0.010) 0.027 (0.013) 0.013 (0.007) 0.013 (0.010)

C18:1-carnitine 0.093 (0.032) 0.080 (0.037) 0.037 (0.010) 0.030 (0.010)

C18:2-carnitine 0.057 (0.013) 0.043 (0.020) 0.020 (0.007) 0.020 (0.013)

Dicarboxylic acylcarnitines

C4DC-carnitine 0.030 (0.017) 0.030 (0.010) 0.023 (0.010) 0.027 (0.007) #

C5DC-carnitine 0.090 (0.037) 0.075 (0.023) 0.053 (0.022) 0.050 (0.010)

* p<0.05 compared to ≤ 9 oocyte number in serum.
# p<0.05 compared to ≤ 9 oocyte number in follicular fluid.
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decreased moderately but unanimously in patients with
embryo number of more than 6.

Discussion
The present study provided evidences that serum carni-
tine profile of patients undergoing IVF is comparable to
that of healthy women. FC and major AC esters can be
detected in the FF, and the serum to FF ratio of individ-
ual carnitine compounds is inversely related to the car-
bon chain length of carnitine esters. Moreover, markers
of reproductive potential (number of oocytes and em-
bryos) appeared to be associated with reduction of FC
and some individual ACs both in serum and FF.
In recent years considerable efforts have been made to

identify potential biomarkers in FF to predict IVF out-
come. FF serves as dynamic, physiological environment
of maturing oocytes and embryos, therefore, it is as-
sumed to reflect metabolic changes that occur during
maturation. It has been shown to contain hormones,
growth factors, reactive oxygen species, cytokines,



Table 4 Carnitine profile according to the number of embryos [μmol/L] [median (interquartile range)]

Serum
embryo number

Follicular fluid
embryo number

≤ 6 N=28 >6 N=14 ≤ 6 N=28 >6 N=14

Analytes Median (IQR) Median (IQR) Median (IQR) Median (IQR)

free carnitine 28.623 (6.217) 24.955 (4.592)* 28.698 (4.914) 25.887 (5.559) #

Total acyl-carnitine 9.148 (2.2399 8.605 (1.500) 7.905 (1.713) 6.938 (1.972)

Total carnitine 37.100 (6.500) 32.739 (4.708)* 36.912 (5.838) 32.956 (6.978)

AC/FC ratio 0.317 (0.0749 0.333 (0.072) 0.279 (0.047) 0.281 (0.065)

Total short-chain acylcarnitines 7.893 (1.4489 7.598 (1.676) 7.316 (1.633) 6.482 (1.900)

Total medium-chain acylcarnitine 0.722 (0.2669 0.619 (0.242) 0.318 (0.121) 0.276 (0.073)

Total long-chain acylcarnitine 0.346 (0.051) 0.313 (0.093) 0.140 (0.024) 0.127 (0.042)

Short chain acylcarnitines

C2-carnitine 7.393 (1.445) 7.470 (1.123) 6.805 (1.525) 6.053 (1.844)

C3-carnitine 0.183 (0.083) 0.183 (0.058) 0.218 (0.071) 0.178 (0.048)

C4-carnitine 0.143 (0.063) 0.135 (0.052) 0.177 (0.085) 0.150 (0.032)

C5-carnitine 0.060 (0.023) 0.048 (0.019) 0.053 (0.013) 0.048 (0.012)

C5-OH carnitine 0.023 (0.010) 0.030 (0.010) 0.020 (0.007) 0.018 (0.003)

Medium chain acylcarnitines

C6-carnitine 0.028 (0.013) 0.025 (0.008) 0.020 (0.013) 0.020 (0.003)

C8-carnitine 0.102 (0.036) 0.087 (0.046) 0.060 (0.023) 0.050 (0.025) #

C8:1-carnitine 0.037 (0.018) 0.035 (0.025) 0.030 (0.018) 0.030 (0.026)

C10-carnitine 0.220 (0.138) 0.206 (0.095) 0.073 (0.026) 0.055 (0.027) #

C10:1-carnitine 0.163 (0.067) 0.140 (0.030) 0.073 (0.028) 0.070 (0.020)

C12-carnitine 0.058 (0.022) 0.056 (0.020) 0.020 (0.004) 0.020 (0.006)

C12:1-carnitine 0.068 (0.025) 0.058 (0.019) 0.022 (0.013) 0.020 (0.010)

Long chain acylcarnitines

C14-carnitine 0.023 (0.010) 0.022 (0.009) 0.010 (0.004) 0.010 (0.003)

C14:1-carnitine 0.056 (0.023) 0.042 (0.030)* 0.020 (0.011) 0.017 (0.007)

C16-carnitine 0.088 (0.026) 0.080 (0.0239 0.038 (0.008) 0.040 (0.012)

C18-carnitine 0.033 (0.010) 0.028 (0.016) 0.013 (0.007) 0.013 (0.009)

C18:1-carnitine 0.093 (0.029) 0.085 (0.040) 0.035 (0.011) 0.030 (0.013)

C18:2-carnitine 0.055 (0.015) 0.047 (0.020) 0.020 (0.007) 0.020 (0.012)

Dicarboxylic acylcarnitines

C4DC-carnitine 0.028 (0.017) 0.030 (0.008) 0.023 (0.010) 0.027 (0.007) #

C5DC-carnitine 0.092 (0.040) 0.078 (0.024) 0.055 (0.021) 0.050 (0.013)

* p<0.05 compared to ≤ 6 embryo number in serum.
# p<0.05 compared to ≤ 6 embryo number in follicular fluid.
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apoptotic factors and several metabolic intermediates
[27,28]. Targeted analysis of specific biomarkers or
certain combination of biomarkers has revealed im-
portant correlation with oocyte quality and/or related
embryo.
The recent introduction of metabolomic and prote-

omic profiling of FF demonstrated that combined use
of a panel of biomarkers as opposed to a single bio-
marker proved to be a reliable estimate of pregnancy
outcome [29-32].
Our present study was prompted by the observations that
L-carnitine-mediated β-oxidation of fatty acids is an essen-
tial energy source for oocyte and embryo development [5-8].
In this regard Dunning et al. reported that inhibition of car-
nitine palmitoyl transferase I (CPT I), the enzyme that cata-
lyzes the initial step of β-oxidation, with etomoxir impaired
subsequent embryo development. On the other hand,
upregulation of β-oxidation during oocyte maturation by L-
carnitine increased oocyte developmental competence as
manifested by the increased rate of cleavage to 2-cell stage
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[21]. It was also demonstrated by the same group that L-
carnitine supplementation during in vitro 3D follicle culture
significantly increased β-oxidation and markedly improved
both fertilization rate and blastocyst development without
altering survival, growth or differentiation of follicles [22].
The beneficial effect of L-carnitine on reproductive perform-
ance has been well- documented, it has been claimed, how-
ever, that in addition to its essential role in β-oxidation l-
carnitine has the capacity to protect against oxidative stress,
inflammation and apoptosis [20,23,24,33]. L-carnitine-re-
lated improvement of insulin resistance and glucose
utilization may also contribute to the better IVF outcome
[34]. However several animal studies investigated the impact
of L-carnitine supplementation on oocyte quality and preim-
plantation embryo development [22-24,35-37], very limited
data are accessible for the carnitine levels of human ovarian
follicular samples [38,39] and no reports are available on
their acylcarnitine profiles. In their study Montjean et al.
could not observe correlations between the total carnitine
content of the follicular fluid and either the circulating estra-
diol content of the serum or the outcome of the IVF
attempt. Robker et al. investigated the L-carnitine concen-
trations in follicular fluid samples from women who were
administered human chorionic gonadotropin. It is not
known whether the L-carnitine level is regulated during the
menstrual cycle by gonadotropin [38]. In our study in an at-
tempt to further explore the relationship between IVF pa-
rameters and the composition of endogenous carnitine pool
we determined the concentrations of FC and 20 major AC
esters in serum and FF samples obtained from patients re-
ceiving IVF. Importantly, all individual ACs measured could
be detected in FF, their concentrations, however, proved to
be dependent on maternal serum concentrations and on the
carbon chain length of acyl groups. These findings are con-
sistent with the notion that FC and AC esters cross the
blood-follicular barrier but the passage through this barrier
is reduced as molecular weight and lipophilicity increases
with the increasing carbon chain length. Moreover, serum
and FF carnitine profiling revealed marked reduction in total
carnitine, FC and AC levels in IVF patients with oocyte
number of >9 and/or with embryo number of >6 as com-
pared to those with the respective values of <9 and/or <6.
Based on these results we suggest that the L-carnitine/AC
pathway is upregulated and the actual carnitine pool is de-
pleted in patients with better reproductive potential.
Mitochondrial transport of long-chain fatty acids for β-

oxidation is achieved via the carnitine circle. This requires
the consecutive action of CPT I, carnitine-AC translocase,
and CPT II [40,41]. The coordinated increase in the activ-
ity of these enzymes may result in enhanced transfer of
activated long-chain fatty acids across the mitochondrial
membranes and in an increase of substrate availability for
β-oxidation to meet the greater energy requirements of
IVF patients with better developmental performance. It is
conceivable that this accelerated process consumes excess
carnitine and deprives carnitine pools.
While our study underlines the importance of carnitine-

mediated β-oxidation in reproduction it is to be consid-
ered that women with disrupted carnitine cycle can con-
ceive and proceed to successful pregnancy. Indeed, there
are case reports of patients with adult-onset CPT II defi-
ciency who become pregnant and went on to deliver pre-
term or full-term newborns [42-45]. In order to identify
IVF patients at risk of functional L-carnitine deficiency
further studies are to be conducted to measure simultan-
eously carnitine compounds and markers of free fatty acid
metabolism.

Conclusions
Carnitine profiling of women undergoing IVF provided
suggestive evidences that L-carnitine metabolism is ac-
celerated and the developmental competence of oocytes
and early embryos can be optimalized by giving supple-
mental L-carnitine.
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