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Abstract

Background: Studies suggested that microRNAs influence cellular activities in the uterus including cell
differentiation and embryo implantation. In assisted reproduction cycles, luteal phase support, given to improve
endometrial characteristics and to facilitate the implantation process, has been a standard practice. The effect of
different types of luteal phase support using steroid hormones in relation to endometrial miRNA profiles during the
peri-implantation period has not seen described. This study was designed to evaluate the expression of miRNAs
during the luteal phase following controlled ovarian stimulation for IVF and the influence of different luteal phase
support protocols on miRNA profiles.

Methods: The study was approved by the Johns Hopkins Hospital Institutional Review Board. Endometrial biopsies
were obtained on the day of oocyte retrieval from 9 oocyte donors (group I). An additional endometrial biopsy was
obtained 3–5 days later (Group II) after the donors were randomized into three groups. Group IIa had no
luteal-phase support, group IIb had luteal support with micronized progesterone (P), and Group IIc had luteal
support with progesterone plus 17-beta-estradiol (P + E). Total RNA was isolated and microarray analysis was
performed using an Illumina miRNA expression panel.

Results: A total of 526 miRNAs were identified. Out of those, 216 miRNAs were differentially regulated (p < 0.05)
between the comparison groups. As compared to the day of retrieval, 19, 11 and 6 miRNAs were differentially
regulated more than 2 fold in the groups of no support, in the P support only, and in the P + E support
respectively, 3–5 days after retrieval. During the peri-implantation period (3–5 days after retrieval) the expression of
33 and 6 miRNAs increased, while the expression of 3 and 0 miRNAs decreased, in the P alone and in the P + E
group respectively as compared to the no steroid supplementation group.

Conclusion: Luteal support following COS has a profound influence on miRNA profiles. Up or down regulation of
miRNAs after P or P + E support suggest a role(s) of luteal support in the peri-implantation uterus in IVF cycles
through the regulation of associated target genes.
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Background
MicroRNAs (miRNAs) are a class of single-stranded, non-
coding small RNAs that regulate gene expression at the
translational level and play fundamental roles in several bio-
logical processes, including cell differentiation, proliferation,
development and apoptosis [1-3]. It is believed that mamma-
lian miRNAs are responsible for the regulation of over 60%
of all human genes [4]. Either by controlling mRNA degrad-
ation or by translational repression, miRNAs have emerged
as key regulators of gene expression [5,6]. Each miRNA is
predicated to have a broad range of target mRNAs and each
mRNA may be regulated by multiple miRNAs [7,8].
The role of miRNAs in the female reproductive system

and particularly in the endometrium has been the focus of
several studies in recent years [9,10]. So far it has been
established that miRNAs are indeed expressed in the
human endometrium and they are also subjected to hormo-
nal regulation [10,11]. Hawkins et al. were able to identify a
number of miRNAs that were differentially regulated in
endometriotic tissues as compared to normal endometrium
[12]. The overall regulatory role of miRNAs in the patho-
physiology of endometriosis has been reviewed extensively
by Ohlsson Teaque et al. [13].
Ovarian stimulation protocols with gonadotropins have

been invariably associated with luteal phase deficiency and
poor implantation rates [14,15]. While the exact reasons for
this phenomenon are still unclear, luteal phase support,
given to improve endometrial characteristics and to facilitate
the implantation process, has been a standard practice. Pro-
gesterone is a universally accepted agent for luteal phase
support and can be administered orally, intramuscularly, or
vaginally [16,17]. Estrogens in the form of 17β- estradiol or
estradiol valerate have also been used for luteal phase sup-
port [18], although studies aimed to evaluate the concept of
estrogen addition during the luteal phase have lead to incon-
clusive results [14,19] . It has been suggested that during
ovarian stimulation for IVF, the endometrial receptivity
starts to occur in mid luteal phase after oocyte retrieval [20].
Prior to, and during the implantation process, the expression
of multiple endometrial genes and gene products is highly
regulated [21-23]. The role of miRNAs in regulating cellular
processes during the endometrial transition has recently
attracted a great deal of attention [10,24-28]. For example,
Kuokkanen et al. reported distinct miRNA gene expression
signatures in the late proliferative and mid-secretory phase
endometrial epithelium [24]. However, the effect of different
types of luteal support in relation to endometrial miRNA
profiles during the period of peri-implantation has not been
described. In this study, we have investigated the impact of
two commonly used luteal phase support protocols, proges-
terone alone and progesterone plus estrogen, on the expres-
sion profiles of 526 miRNAs in the human endometrium
following ovarian stimulation with a gonadotropin/ GnRH
antagonist protocol.
Methods
Oocyte donors and ovarian stimulation
The study was approved by the Johns Hopkins Hospital
Institutional Review Board. Nine oocyte donors who en-
rolled in the Johns Hopkins oocyte donation program parti-
cipated in the study. All donors were 21 to 31 years of age
and underwent a standard screening protocol for oocyte do-
nation, in accordance with the recommendations of the
American Society for Reproductive Medicine [29]. The risks
of the procedure were discussed in detail, with particular
emphasis on the risks associated with the endometrial
biopsy and the use of steroids during luteal phase, and writ-
ten informed consents were obtained.
Study subjects underwent ovarian stimulation according

to a gonadotropin / GnRH antagonist protocol as described
previously [30]. Briefly, ovarian stimulation was initiated
with gonadotropins on the second day of vaginal bleeding
following discontinuation of oral contraceptive pills. On the
6th day of stimulation, a daily subcutaneous evening dose of
0.25 mg ganirelix acetate (Schering-Plough Corp, West
Orange, NJ, USA) was added. When at least three follicles
reached a mean diameter of 18 mm, ovulation was trig-
gered with a single dose of hCG (Profasi, 10,000 IU; Serono
Inc. Rockland, MA, USA). Sonographically guided transva-
ginal oocyte retrieval was performed 34–36 hours after the
hCG administration. The retrieved oocytes were used for
IVF procedures and the resulting embryos were either
transferred to matched recipients or cryopreserved for
future use.

Luteal-phase support and tissue collection
Endometrial biopsies on oocyte donors were performed
using a Pipelle catheter (Unimar, Wilton, CT) on the day of
oocyte retrieval and served as baseline (group I). At that
time, the donors were randomized into three groups, with
three subjects in each group. Group IIa received no luteal
phase support after retrieval. Group IIb had luteal phase
support with micronized progesterone (P) in the form of
vaginal suppositories (200 mg every 6 h starting from the
day after retrieval). Group IIc received a daily oral dose of
2 mg 17β-estradiol in addition to the micronized proges-
terone (P+E). Endometrial biopsies were obtained again
3–5 days (each of treatment groups contains 2 samples
from day 3 and 1 sample from day 5) after retrieval. All spe-
cimens were stored in liquid nitrogen at −196°C immedi-
ately after the biopsy.

RNA preparation and miRNA analysis
Total RNA was isolated and extracted from individual endo-
metrial samples using the Trizol Reagent method (Invitro-
gen, Carlsbad, California 92008, cat. no. 15596–026). The
quality of the RNA samples was assessed using an Agilent
2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA).
The integrity of miRNA was assessed by a miRNA specific
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RT-PCR using an ABI (Applied Biosystems; Foster City, CA)
Taqman assay for U6 snRNA (AB Assay ID 001973). The
results indicated an average Ct of 20.1 (SD 0.84) for all sam-
ples with a minimum Ct of 18.3 and maximum Ct of 22.
Illumina miRNA expression profiling (Catalog # MI-

501-1001) was carried out according to manufacturer’s
recommended protocols. Briefly 200ngs of total RNA for
each sample was polyadenylated and converted to cDNA
using a biotinylated oligo-dT primer with a universal PCR
sequence at its 5’-end. Biotinylated cDNA was annealed to
query oligos. Each query oligo consisted of a universal PCR
priming site at the 5’end, an address sequence that comple-
ments a corresponding capture sequence on the array, and a
microRNA-specific sequence at the 3’end. This mixture was
bound to streptavidin-conjugated paramagnetic particles to
select the cDNA/oligo complexes; second strand cDNA syn-
thesis was completed by primer extension. All cDNA tem-
plates were amplified with a pair of common PCR primers.
The primer on the strand complementary to the array was
fluorescently labeled for subsequent hybridization to the
arrays.
Validation of the selected miRNAs, shown to be regulated

by Illumina miRNA microarray, was performed by RT-PCR.
QRT-PCR was performed using the RT2 ProfilerTM Human
miFinder miRNA PCR Array (MAH-001A) from SuperArray
(SABiosciences, Gaithersburg, MD). RT2 Profiler™ PCR
Arrays are designed for relative quantitative QRT-PCR
based on SYBR Green detection and performed on a one
sample/one plate 96-well format, using primers for a preset
list of 88 most abundantly expressed and best characterized
micro RNA sequences. In brief, miRNA was converted to
cDNA via a universal tailing and reverse transcription
reaction. CDNA volumes were adjusted to ~2.5 ml with
SuperArray RT2 Real-Time SYBR Green/ROX PCR 2X
Master Mix (PA-012) and 25 μl of cDNA mix was added
to all wells. The PCR plate was sealed and spun at
1500 rpm X 4 min. Real time PCR was performed on an
Applied Biosystem (Foster City, CA) 7300 Real Time PCR
System. ABI instrument settings included setting reporter
dye as “SYBR”, passive reference is “ROX”; Delete UNG
Activation, and add Dissociation Stage.
To correlate differentially expressed miRNAs and their

regulated genes, we used differentially regulated and selected
miRNAs against an established miRNA database for pre-
dicted target genes (Sanger miRBase, v9.1, February 2007
release). MicroRNA data was also analyzed through the use
of Ingenuity Pathway Analysis (IPA, IngenuityW Systems,
www.ingenuity.com). Pathway enrichments were calculated
using the NIAID DAVID functional enrichment tool [31,32].

Statistical analysis
Preliminary analysis of the scanned data was performed
using Illumina BeadStudio software which returns single in-
tensity data values/miRNA following the computation of a
trimmed mean average for each probe type represented by a
variable number of bead probes/gene on the array. Data was
globally normalized by scaling each array to a common me-
dian value, and significant changes in gene expression be-
tween class pairs were calculated using the Student t-test.
Significant gene lists were calculated by selecting genes which
satisfied a significance threshold criteria of t-test p-values less
than or equal to 0.05 and a fold change±2 or greater.
Relative miRNA expression derived from QRT-PCR was

calculated by using the 2-Ct method, in which Ct indicates
cycle threshold, the fractional cycle number where the
fluorescent signal reaches detection threshold [33]. The
normalized ΔCt value of each sample is calculated using an
endogenous control small molecular weight RNA (U6
snRNA). Fold change values are presented as average fold
change=2-(average Ct) for genes in treated relative to control
samples. The criteria of significance used for the RT-PCR
results were the same as used for the Illumina miRNA
arrays.

Results
Demographic characteristics
Demographic characteristics for all study participants were
similar in all treatment groups. The mean age of the study
participants was 24 years and mean body mass index was
21.3± 1.2 kg/m2. Overall, the baseline serum FSH, LH and
E2 levels, the length of the stimulation , total amount of
gonadotropins used, peak estradiol levels, and number of
oocytes retrieved were comparable (P>0.05) between the
groups (Table 1).

MiRNA profiles and comparisons between groups
To establish endometrial miRNA profiles, we used a micro-
array platform consisting of 526 miRNA probes. Triplicates
of each group samples were used, which proved that genes
from same condition of samples are reproducible. Levels of
miRNA expression are similar in the same sample groups
including the samples from either day 3 or day5. The fluor-
escent intensity of each expressed transcript in each sample
group was compared to the median fluorescence intensity of
each transcript in the paired comparison group. Individual
transcripts with increased (red) and decreased (green)
miRNA abundance in the given comparisons were identi-
fied, as shown in the hierarchical clustering map in Figure 1.
It is demonstrated that there is a high degree of overall con-
cordance between and within treatments for later versus
early luteal phase and, in particular a striking concordance,
for hormone treated versus non-treated groups at days 3–5
after oocyte retrieval. Following global normalization, the
mean expression value for each group was subjected to stat-
istical analysis. A 2 fold change in the expression was arbi-
trarily selected as a cut-off level. Individual miRNAs that
have shown a significant change in their expression (greater
than 2fold and/or p<0.05 between the comparison groups)

http://www.ingenuity.com


Table 1 Group characteristics

Characteristics Group IIa (no support) Group IIb (P support) Group IIc (P + E support) P

N 3 3 3

Age (yr) 25.7 ± 3.2 23.6 ± 0.8 22.8 ± 1.2 0.494

BMI (kg/m2) 23.3 ± 1.4 21.6 ± 1.8 20.2 ± 1.2 0.096

Day 2 FSH (mIU/ml) 4.5 ± 0.9 5.6 ± 1.1 4.0 ± 0.3 0.178

Day 2 LH (mIU/ml) 2.4 ± 0.8 4.0 ± 1.3 5.2 ± 0.2 0.507

Day 2 E2 (pg/ml) 36.7 ± 11.6 34.5 ± 12.5 20.5 ± 3.5 0.646

Gonadotropins used (IU) 2850± 525 2400± 645 2625± 675 0.387

Peak E2 level (pg/ml) 1928± 100.0 2514 ± 400 2625± 480 0.563

Days of stimulation 10.3 ± 1.1 9.3 ± 1.2 10.1 ± 0.7 0.588

No. of oocytes 14.5 ± 5 18.4 ± 3 16.0 ± 4 0.398
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are shown in an Additional file 1: Table S1 with a total of
248 miRNAs listed.
Initially we compared miRNA expression in the endomet-

rial samples obtained on the day of retrieval to those
obtained 3–5 days later (Figure 2, the 3 comparison columns
on the left). In the group with no luteal phase support, 14
Figure 1 Hierarchical clustering map of miRNA genes in all
comparison groups: day 3–5 vs. day 0. (grpIIa-grpI = no luteal
support vs. no luteal support; grpIIb-grpI = P support vs. no
luteal support; grpIIc-grpI = P+ E support vs. no luteal support)
and day 3–5 vs. day 3–5 (grpIIb-grpIIa = P support vs. no
support; grpIIc-grpI = P+ E support vs. no support; grpIIc-
grpIIb = P+ E support vs. P support only). Increased (red),
decreased (green), and unchanged (yellow) miRNA levels from each
transcript are indicated for each comparison group.
miRNAs (HS_202.1, HS_209.1, HS_284.1, hsa-miR-202*:9.1,
hsa-miR-346, hsa-miR-363*, hsa-miR-504, hsa-miR-569, hsa-
miR-302d, hsa-miR-632, HS_17, HS_145.1, hsa-miR-133b,
hsa-miR-144:9.1) were down-regulated and 5 miRNAs were
up-regulated (HS_130, hsa-miR-876-5p, hsa-miR-876-3p,
hsa-miR-122, hsa-miR-9) at greater than 2 fold changes. In
the P alone group, 4 miRNAs (hsa-miR-144:9.1, hsa-miR-
486-5p, HS_97, HS_203) were down regulated and 7
(HS_163, hsa-miR-614, hsa-miR-610, hsa-miR-559, hsa-miR-
876-5p, HS_18, hsa-miR-876-3p) were up regulated, while in
the P+E support group, 1 miRNA (hsa-miR-449a) was
underexpressed and 5 (HS_276.1, hsa-miR-876-5p, HS_18,
HS_111, hsa-miR-876-3p) were overexpressed .
Subsequently, we compared miRNA gene expression be-

tween the different treatment groups during mid-luteal
phase at 3–5 days after retrieval, as shown in Figure 2, the 3
comparison columns on the right. In the progesterone sup-
port group an overexpression (more than 2 fold increase)
was observed for 33 miRNAs (HS_149, HS_166.1, HS_175,
HS_202.1, HS_209.1, HS_284.1, HS_41, hsa-miR-1468, hsa-
miR-202*:9.1,hsa-miR-346, hsa-miR-504, hsa-miR-512-5p,
hsa-miR-560:9.1, hsa-miR-563, hsa-miR-638, hsa-miR-663,
hsa-miR-302d, hsa-miR-302b*, hsa-miR-632, hsa-miR-622,
HS_17, HS_163, hsa-miR-518b, HS_108.1, hsa-miR-614,
hsa-miR-610, HS_263.1, HS_30, hsa-miR-512-3p, HS_32,
HS_282, HS_169, HS_145.1) and in the P+E support group
for 6 miRNAs (HS_149, HS_276.1, HS_41, hsa-miR-563,
HS_17, hsa-miR-144:9.1) as compared to the no steroid sup-
plementation group. On the other hand, underexpression of
3 miRNAs (HS_176, HS_97, HS_203) were seen only in P
support group. In the comparison between E+P and P
supplementation groups, 5 miRNAs (hsa-miR-144:9.1, hsa-
miR-486-5p, HS_176, HS_97, HS_203) were up-regulated
and none were down regulated at greater than 2 fold levels.

Venn diagram analysis of differentially expressed
miRNA genes
A total of 216 miRNAs were differentially regulated
(p<0.05) between the study groups. MiRNAs with significant



Figure 2 Numbers of miRNA genes with more than 2 fold changes between comparison groups. no= no steroid supplementation;
P = progesterone support; P + E = progesterone + estrogen support.
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changes in common (shared miRNAs) between groups are
shown in Figure 3. Panel A shows changes in miRNA
expressions between day 3–5 and day of retrieval. Among
the 3 comparison groups, 3 miRNAs (hsa-miR-876-3p, hsa-
miR-155, and hsa-miR-503) were shared by all 3 groups and
5, 10 and 13 miRNAs respectively were shared in each pair
of groups. Panel B compares groups on day 3–5 at all pos-
sible combinations. Group IIb vs. IIa and Group IIc vs. IIa
shared 4 miRNAs (HS_241.1, hsa-miR-346, hsa-miR-503,
and hsa-miR-99a); Group IIc vs. IIa and Group IIc vs. IIb
shared 1 miRNA (hsa-miR-766) and Group IIb vs. IIa and
Group IIc vs. IIb shared 3 miRNAs (hsa-miR-501-5p, hsa-
miR-512-5p and hsa-miR-146a).

Validation analysis
Array based RT-PCR with 88 miRNAs was used to validate
our Illumina array expression findings. We were able to map
19 miRNAs between the two platforms. Of these, 14/19
demonstrated concordance at the level of the direction of
regulation (increased or decreased) at a hypergeometric
probability of p < 0.014. Nine representative miRNAs were
selected for groups IIa vs. I and IIc vs. IIa as indicated in
Figure 4. The trends for up-regulation and down- regula-
tion of these miRNAs were consistent between the two
array measurements.

MiRNA and target genes
To explore the biological relationship between differen-
tially expressed miRNAs and their regulated genes, we
used differentially regulated (p < 0.05) miRNAs on day
3–5 after oocyte retrieval against an established miRNA
database for predicted target genes (Sanger miRBase,
v9.1, February 2007 release). Interestingly, there are large
numbers of predicted target genes for a given miRNA
per miRBase. We were able to identify nineteen miRNAs
and their selected target genes in this defined study cat-
egories which are shown in Table 2.
In order to further investigate the possible biological impli-

cations for those miRNAs which were cross validated by both
QRT-PCR and Illumina array data (Figure 4), the relationship
of these microRNAs and their known gene targets was evalu-
ated using the IPA miRNA Target Filter software. This group
of miRNAs is regulated between day 3–5 and day 0 and also
at day 3–5 between P+E (Grps IIc) and no support (Grps
IIa) groups. IPA was able to identify 7 out of the 9 miRNAs
from Figure 4 (excluding hsa-miR-144, and hsa-mir-181b).
The gene targets were identified for these miRNAs based
upon the selection of the most stringent criteria requiring
experimental observation of a given miRNA and its target.
Gene targets were further filtered for known involvement in
endocrine system disorders. The results of this analysis
(Table 3) that shows pathway enrichments were calculated
for the entire gene set. The findings of the analysis demon-
strated a significant involvement of genes of extracellular
matrix, cell proliferation, and response to steroid hormone
stimulus between days 3–5 versus day 0 at no steroid support
groups (Table 3, Grps IIa-I). Interestingly, this effect was al-
most completely abrogated by progesterone and estrogen



Figure 3 Venn diagram illustrations of differentially expressed miRNA genes in six comparison groups. Number of miRNA genes that
were differentially expressed (p < 0.05) in the endometrium with and without luteal phase support as compared 3–5 days after oocyte retrieval
versus day of retrieval (A) and at 3–5 days after oocyte retrieval (B) among groups. no = no steroid supplementation; P = progesterone
supplementation; P + E = progesterone + estrogen supplementation.
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treatment (Table 3, GrpsIIc-IIa) for genes of cellular prolifera-
tion and response to steroid hormones but not for extracellu-
lar matrix.

Discussion
In the past few years, the field of miRNA research has
evolved rapidly. Various studies have provided strong evi-
dence for the widespread expression and the regulatory
functions of miRNAs on gene expression under either
physiologic or pathologic conditions. MicroRNAs have now
Figure 4 Validation results of the microarray findings for 9 miRNAs.
been recognized as key players in the process of cell prolif-
eration and differentiation. Global analysis of miRNAs in
human tissues have showed that, in addition to the brain,
the uterus, the cervix, and the ovaries have the highest
restricted enrichment in individual miRNAs [34]. The iden-
tification of miRNA as well as the functional analysis of indi-
vidual expressed miRNA in the uterus has shed light onto
the cycling changes that occur in response to steroids and
during pregnancy. The impact of the ovarian steroids on
miRNA expression and regulation in the uterus has been



Table 2 Selected miRNAs and gene targets (comparisons are at day3-5 after oocyte retrieval)

miRNA P vs. no P+ E vs. no P+ E vs. P Predicted target genes

hsa-miR-335 "" IMP2,CD79B,WWP1,AP3S1,HOXD8,MAX,SP1,MAP2,MAK3,STARD7,CAP350,PANK2,
SRPR,PPP6C,LASS5,ATP1B1

hsa-miR-346 " " IMP1,EIF3S1,BCL6,ABCC12,LIF,FSTL4,KGFLP2,KRAS,RAF7,FGF7,TMEM28,IGSF4B,
PPP1R9B,COL2A1,HCG3, CALN1,HBP1,SF1

hsa-miR-448 " DOCK9,PPM2C,NTF3,CAP1,MAP2K6,ITM1,PRKAR2B,PAPPA,CDC2L6,CNTN4,
IGF1R,SOCS5,CLK1,HOXA11,WWP1,FOXJ3,WDR22,MPPED2,ADD1,PRKA2

hsa-miR-504 " DCX,ATP1B4,IL1RAPL1,MNT,KLF13,PRKAR2A,IL16,LIF,FXR2,NRF1,CAMK2G,MMD,
LOC284296,DND1,CNTFR, SORT1,NFIX

hsa-miR-512-5p "" # PIK3R1,CTNNB1,EMX2,SOX21,RIPK5,MBD6,SRPK, VNN3,
ERP29,PHF15,FBXW11,LOC285074,MAP1A,CHD9

hsa-miR-520 g "" ETF1,CAMK2N1,NLK,TNFSF11,CNR1,EFTUD1,HMGB3,FBN2,ENC1,MARK4,TFEB,
TNFSF12,PRKAR2A,TNKS1BP1,EIF4E,PPP3CA,IMP1,MAP3K14,TMTC2,TTN,

GTF2IRD2,PTK2B,DNAJB5,TNRC6A,VEGF,EIF4G2,FOXO1A,MAP3K9

hsa-miR-204 " RUNX2,SOX4,NRBF2,MAP1LC3B,CDC42,ATP2B1,AKAP1,MAP3K3,CENTD1,IGF2R,
NTRK2,TGFBR2,AP3M1,

NEUROG1,P53CSV,TCF7L1,CDH2, CDC25B,TCF12,ELF2

hsa-miR-369-3p # TCF8,PKIA,TLN1,CHD7,NCK2,CD2AP,CDC2L6,ELMOD1,CCNE2,FOXG1B,HOXB3,ADAMTS19,
GIT2,ADAMTS3,TCF12, SRPK2,ADAMTS6,MAP2,ADAM10,FOXO1A,VEGFC

hsa-miR-328 " AK6,ITGA5,PRX,IGSF4C,MAX,SOX11,PTPN9,DPH2, HIST1H4D,USP37,VSIG4,RPP14,SF4,
ULK2,FGD1,PLAG1

hsa-miR-186 " APLP2,ITGA6,RPS6KB1,CDC42,PRDM10,IGSF11,EFCBP1,TCF20,CAST,LMBR1,TMED2,TGFBR2,ICMT,
IL2,CCNT2,HOXB8,PAK7,FOXD1,PTGES3,MAP3K2,VEGF,COL3A1, SRPK2,MAPKAP1,C16orf52,MAP2

hsa-miR-517a " AMMECR1,ACACA,NPAS4,BSN,HNRPU,PTK2B,CDKN2A,CBLN2,RAPGEFL1,LOC201895,FOXJ3,
PHF13,TMCC1

hsa-miR-365 ## EIF4E3,MAP2K7,LAMP2,ENTPD7,PCNP,ADAMTS6, COL7A1,PPP5C,REV3L,PTGDR,KCNH2,
RBM12,PKD2L2

hsa-miR-221 ## CDC2L6,TIMP3,EIF4E3,NTF3,IMP2,HTLF,CDV3,NL,EIF5A2,NRK,PAK1,CDKN1C,FAT2,LIFR,TMCC1,
MAP3K10,VGLL4,FAM13A1,TCF12,HOXC10,MAPK10,HMGCLL1,ADAM11,CD4,CTCF

hsa-miR-495 ## MAPK6,CDK6,EML4,ILF3,PTK9,PRR7,HBEGF,HOMER1,MARK3,SP4,TGFB2,LHX2,HOXC6,PRKX,
AP3M1,SOX9,GMFB,HMGCLL1,FOXO3A,EDG3,NKRF,HOXB9,TIMP2, IGSF4,CD164,TNFRSF21

hsa-miR-146a # " FBXL10,IRAK1,TRAF6,CD79B,SP8,FLJ33814,SFRS6,NPAS4,CXorf22,EIF4G2,MMP16,USP3,
KCTD15,SMAD4,LOC440944,SEC23IP,BCORL1,TM6SF2,DLGA1

hsa-miR-99a # # EPDR1,FZD8,HS3ST2,EIF2C2,HS3ST3B1,FGFR3,BAZ2A,MBNL1,CYP26B1,KBTBD8,SMARCA5,
FRAP1,ZZEF1,ICMT,C4orf16,ADCY1,MTMR3,CTDSPL,HOXA,RAVER2, INSM1,TRIB2,SLC44A1

hsa-miR-181c,d "" ETF1,COL16A1,NLK,TNFSF11,MAP3K3,MAP2K1,ITGA3,TCERG1,MAPT,MAPK1,MAP1B,CDH13,
ITGB8,PCGF2,ADAMTS18,LMBRD2,MMP14,CD163,LIF,ADAMTS6, TNFRSF11B,CDC42BPA

hsa-miR-200b # TCF8,NTF3,CYLN2,HMGB3,PRKAR2B,MPP5,GIT2,MAP4K3,FLJ21103,E2F3,CSNK1G3,MMD2,
ZNF53, EIF5B,ERRFI1

hsa-miR-196b # IMP1,CDYL,COL14A1,SSR1,IMP3,CDV3,CALM3,COL24A1,CDKN1B,ELF4,HOXC8,HMGA2,
HOXA5,MAP4K3,PARP6,COL3A1,HOXA1,TNFSF12,COL1A2, HOXA7,HOXB6

" or #= up or down regulated, p< 0.05; "" or ##= up or down regulated, p< 0.01.
See website http://www.mirbase.org (http://microrna.sanger.ac.uk) regarding additional predicted target genes.
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evidenced by the fact that treatment with 17β estradiol or
RU-486 resulted in differential regulation of miRNAs in the
myometrium and leiomyomas [35].
In the present study, we have examined 526 different

miRNAs in the human endometrium following COS and
identified a rich number of miRNAs with at least 2 fold
changes in the level of expression during the luteal phase
(Figure 2, Additional file 1: Table S1). Statistical analysis
identified that the changes were significant (p<0.05) for 216
of miRNAs (Additional file 1: Table S1). These changes were
observed not only in the within the group analysis at
different times during luteal phase (comparison between
day 0 and day 3–5) but also in the analysis between groups
at the same time frame (comparison between the treat-
ment groups at day 3–5). As demonstrated in Figure 1and
Figure 2, there was a substantial increase in miRNA ex-
pression in the groups treated with progesterone alone as
compared to the no supplementation group. In genome-
wide identification of endometrial miRNA in natural and
stimulated cycles reported by Sha et al. [36], 22 miRNAs
were significantly dysregulated on the day of hCG+7 in sti-
mulated cycles as compared with day of LH+7 in natural

http://www.mirbase.org
http://microrna.sanger.ac.uk


Table 3 Cross validated miRNAs and their selected target genes

Symbol GrpsIIa-I [ILL-FC] GrpsIIc-IIa [ILL-FC] Source Symbol Entrez gene name Pathway (enrichment) P Value FDR

miR-223-3p (GUCAGUU) 1.389 1.111 1 VIM vimentin

miR-223-3p (GUCAGUU) 1.389 1.111 1,2 RHOB ras homolog family member B

miR-223-3p (GUCAGUU) 1.389 1.111 1 IRS1 insulin receptor substrate 1

miR-29b-3p (AGCACCA) 1.375 1.068 2,3 TUBB2A tubulin, beta 2A class IIa

miR-29b-3p (AGCACCA) 1.375 1.068 1,2,3,4 SPARC secreted protein, acidic,
cysteine-rich (osteonectin)

extracellular matrix 1.29E-07 4.44E-06

miR-29b-3p (AGCACCA) 1.375 1.068 1,2,3 PIK3R1 phosphoinositide-3-kinase,
regulatory subunit 1 (alpha)

miR-29b-3p (AGCACCA) 1.375 1.068 2,3 MYBL2 v-myb myeloblastosis viral
oncogene homolog
(avian)-like 2

miR-29b-3p (AGCACCA) 1.375 1.068 1,2 COL5A3 collagen, type V, alpha 3 extracellular matrix 1.29E-07 4.44E-06

miR-29b-3p (AGCACCA) 1.375 1.068 32,3 COL5A2 collagen, type V, alpha 2 extracellular matrix 1.29E-07 4.44E-06

miR-29b-3p (AGCACCA) 1.375 1.068 1,2,4 COL4A1 collagen, type IV, alpha 1 extracellular matrix 1.29E-07 4.44E-06

miR-29b-3p (AGCACCA) 1.375 1.068 1,2,3,4 COL1A2 collagen, type I, alpha 2 extracellular matrix 1.29E-07 4.44E-06

miR-29b-3p (AGCACCA) 1.375 1.068 1,2,4 COL15A1 collagen, type XV, alpha 1 extracellular matrix 1.29E-07 4.44E-06

miR-9-5p (CUUUGGU) 2.104 −1.802 1 NFKB1 nuclear factor of kappa light
polypeptide gene enhancer
in B-cells 1

miR-9-5p (CUUUGGU) 2.104 −1.802 1,2 FOXO1 forkhead box O1

miR-9-5p (CUUUGGU) 2.104 −1.802 1,2 FOXG1 forkhead box G1 positive regulation of cell proliferation 1.21E-08 1.67E-06

miR-9-5p (CUUUGGU) 2.104 −1.802 1,2,3 CDH1 cadherin 1, type 1,
E-cadherin (epithelial)

miR-181a-5p (ACAUUCA) 1.376 −1.24 1,4 TRA@ T cell receptor alpha locus

miR-181a-5p (ACAUUCA) 1.376 −1.24 1,2 TIMP3 TIMP metallopeptidase inhibitor 3

miR-181a-5p (ACAUUCA) 1.376 −1.24 1,2 NOTCH4 notch 4 positive regulation of cell proliferation 1.21E-08 1.67E-06

miR-181a-5p (ACAUUCA) 1.376 −1.24 1,2 KRAS v-Ki-ras2 Kirsten rat sarcoma
viral oncogene homolog

response to steroid hormone stimulus 6.24E-07 4.65E-05

miR-181a-5p (ACAUUCA) 1.376 −1.24 1,2,4 HOXA11 homeobox A11

miR-181a-5p (ACAUUCA) 1.376 −1.24 1,2 GATA6 GATA binding protein 6

miR-181a-5p (ACAUUCA) 1.376 −1.24 1,2 ESR1 estrogen receptor 1 response to steroid hormone stimulus 6.24E-07 4.65E-05

miR-181a-5p (ACAUUCA) 1.376 −1.24 1,2 CDKN1B cyclin-dependent kinase
inhibitor 1B (p27, Kip1)

positive regulation of cell proliferation 1.21E-08 1.67E-06

miR-181a-5p (ACAUUCA) 1.376 −1.24 1,2,3,4 BCL2 B-cell CLL/lymphoma 2 response to steroid hormone stimulus 6.24E-07 4.65E-05
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Table 3 Cross validated miRNAs and their selected target ge s (Continued)

miR-196a-5p (AGGUAGU) 1.092 −1.342 1 IKBKB inhibitor of kappa light polypeptide
gene enhancer
in B-cells, kinase beta

miR-196a-5p (AGGUAGU) 1.092 −1.342 1,2 HOXC8 homeobox C8

miR-196a-5p (AGGUAGU) 1.092 −1.342 1,3 ANXA1 annexin A1

miR-99a-5p (ACCCGUA) 1.427 −1.48 1,2 MTOR mechanistic target of rapamycin
(serine/threonine kinase)

positive regulation of cell proliferation 1.21E-08 1.67E-06

miR-99a-5p (ACCCGUA) 1.427 −1.48 1,2 IGF1R insulin-like growth factor 1 receptor positive regulation of cell proliferation 1.21E-08 1.67E-06

miR-99a-5p (ACCCGUA) 1.427 −1.48 1,2 FGFR3 fibroblast growth factor receptor 3 positive regulation of cell proliferation 1.21E-08 1.67E-06

miR-128 (CACAGUG) 1.184 −1.345 1,2 TXNIP thioredoxin interacting protein response to steroid hormone stimulus 6.24E-07 4.65E-05

miR-128 (CACAGUG) 1.184 −1.345 2,3 TGFBR1 transforming growth factor, beta
receptor 1

response to steroid hormone stimulus 6.24E-07 4.65E-05

miR-128 (CACAGUG) 1.184 −1.345 1,2 LDLR low density lipoprotein receptor response to steroid hormone stimulus 6.24E-07 4.65E-05

miR-128 (CACAGUG) 1.184 −1.345 1,2 E2F3 E2F transcription factor 3 positive regulation of cell proliferation 1.21E-08 1.67E-06

miR-128 (CACAGUG) 1.184 −1.345 1,2 ADORA2B adenosine A2b receptor

Ingenuity Pathway Analysis (IngenuityW Systems, www.ingenuity.com). MiRNA Targ Filter was applied using the strictest criteria (experimentally observed microRNA/gene targets only) filtered for genes previously
identified for involvement in endocrine system disorders. Each of the seven miRN as multiple gene targets. Fold changes between groups as determined by Illumina miRNA array measurements are shown.
Ingenuity target identifications are generated from multiple databases (Source). Pa ay enrichments were calculated for the entire gene set using the NIAID DAVID functional enrichment tool [31,32]. Genes that
feature in both the cellular proliferation and the steroid hormone pathways are in d (KRAS, BCL2, TGFBR1).
[ILL-FC] = Illumina array-fold change; Source = 1.miRecords, 2.TargetScan Human, 3 enuity Expert Findings, 4.TarBase; FDR = False Discover Rate.
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cycles. Among those, 11 miRNAs exhibited putative estro-
gen response elements or progesterone response elements
in the promoters. In a study of examining gene expression
profile in natural cycle and stimulated cycles during luteal
phase (LH+2 or 7; hCG+2 or 7), Haouzi et al. [37]
demonstrated that COS regimens altered endometrial re-
ceptivity in comparison with natural cycle. These and our
studies indicate that ovarian stimulation or altered steroid
hormone levels may affect miRNA profiles, consequently,
affect endometrial receptivity. Furthermore, we found that
the addition of estradiol in the regimen resulted in a signifi-
cant attenuation of effect of progestone (Figure 1, Figure 2)
on the level of miRNA expression. These findings support
the notion that the well known anti-proliferative effect of
progesterone on the endometrium could be possibly exerted
by a localized increase in miRNA expression. The addition
of estradiol at the same time could reverse this effect par-
tially by attenuating this increase. Whether this effect is dir-
ectly or indirectly associated with ovarian stimulation or the
type of drug delivery for luteal support (estradiol was admi-
nistered orally whereas progesterone was administered vagi-
nally in this study) requires further investigation.
Bymicroarray,Northenblotand insituhybridization,Huetal.

[38] was able to identify eight specific miRNAs that were sig-
nificantly up-regulated at implantation sites. Chakrabarty et al.
have showed in the mouse uterus, that two specific miRNAs,
the mmu-miR-101a and the mmu-miR-199a*, were differ-
entially expressed during implantation in coordination with
the expression of cyclooxygenase-2(Cox-2), a gene critical
for implantation [39]. Studies on temporal and spatial regu-
lation of miRNAs in the rat uterus, during embryo implant-
ation, have identified the let-7a and mir-320 specifically in
the uterine endometrium with higher expression level on
gestation day 6–7 [26,27]. These evidences and our find-
ings of differential expression of miRNAs in the peri-
implantation period with and without luteal phase support
suggest role(s) of miRNAs during the remodeling process
of endometrium in association with implantation.
Neo-angiogenesis is a pivotal process in reproductive

function where it regulates endometrial regeneration, corpus
luteum formation and finally placentation. The regulatory
function of miRNAs in the process of neo-angiogenesis has
been illustrated in several in vitro and in vivo models [9].
For example, the role of miRNAs in the neo-angiogenesis
has been reported in experiments with Dicerex ½ mouse
embryos (altered function of Dicer required for miRNA pro-
cessing) which suffer from defective angiogenesis, due to
disruption in the expression of vascular endothelial growth
factor (VEGF) as well as to its receptor flt-1 [40]. We have
noticed in our study that several miRNAs including miR-
520 g, miR-369-3p, and miR-186 (Table 2), with VEGF as
predicted target gene, were differentially regulated during
the peri-implantation period. More specifically there was a
significant increase in the expression of miR-520 g in the
group that received only progesterone as compared to the
other groups. In contrast, in the same group, there was a pro-
nounced suppression of miR-221, which is known to regulate
endothelial nitric oxide synthase, one of the key regulators of
endothelial biology and angiogenesis [41]. Whereas our find-
ings support the regulatory effect of miRNAs in the process
of neo-angiogenesis, the precise impact of this action remains
obscure. Individual targets of specific miRNAs responsible for
the phenotypes have been proposed in experimental settings,
although it is likely that many miRNAs function through co-
operative regulation of multiple mRNAs [7]. Indeed, Revel
et al. evaluated the expression of miRNAs in the secretory
endometrium of repeated implantation failure patients and
identified 13 miRNAs were differentially expressed (10 were
overexpressed and 3 were underexpressed), which putatively
regulated the expression of 3800 genes.
In addition, in this study, based on the most stringent

criteria requiring experimental observations, IPA miRNA
Target analysis for cross validated microRNAs identified 7
out of 9 miRNAs and their gene targets which were further
subjected for pathway analysis. The results revealed signifi-
cant involvement of genes of extracellular matrix, cell pro-
liferation, and response to steroid hormone stimulus from
day 0 to day 3–5 after oocyte retrieval in a group with no
steroid support (Table 3). Conversely, this effect was almost
completely abolished by supplementation of progesterone
and estrogen (Table 3, GrpsIIc-IIa) for genes of cellular
proliferation and response to steroid hormones bur not for
genes of extracellular matrix.
Under the influence of the ovarian steroids the human

endometrium undergoes cyclic changes. Estradiol promotes
epithelial cell proliferation, while progesterone inhibits this
estrogen-induced effect, promotes differentiation, and has
decidualizing effects on endometrial stroma later in the sec-
retary phase. We hypothesize that ovarian steroids may
regulate multiple genes related to the uterine tissue remod-
eling and endometrial receptivity, at least in part, through
modulating miRNA expression profiles.
We realize that there are several limitations in this study.

The relatively small sample size due to limited number of
donors that have agreed to participate could represent one of
those. Unfortunately due to the design of our experiment it
was extremely difficult to obtain more specimens. Further-
more, due to the fact that the same women were biopsied
twice during the same COS cycle the first biopsy may induce
gene expression differences that are likely to be reflected in
the miRNA expression profile of the second biopsy. Add-
itional group(s) with only one biopsy for each subject for a
given group and given day of biopsy would provide another
layer of control to strengthen the findings in this study. On
the other hand, the limited sample size also reflects the diffi-
culty in obtaining these samples. In addition, although group
II contains 3 samples in each sub-group, there are 2 samples
from day 3 and 1 sample from day 5 which may potentially
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affect miRNA profiles. However, after normalization and care-
ful comparison, samples from day 3 and day 5 showed similar
expression level on miRNAs profile in the same treatment
group. Since day 3–5 are all in mid-secretory period of the
cycle, we combined day 3 and day5 samples as one stage of
the luteal phase for analysis.
Despite these limitations nevertheless, our array-based

global miRNA profiling describes, for the first time, the
miRNA expression profile in the human endometrium dur-
ing the luteal phase following COS for IVF and luteal sup-
port with steroid supplementation. We have shown that
this profile is under considerable influence by ovarian ster-
oids, even though the molecular mechanism of this inter-
action still remains unclear. Importantly, several miRNAs
found to have enriched or depleted transcript load during
the luteal phase may have specific roles in the control of
endometrial receptivity. Further studies are necessary to
create a detailed expression profile for these miRNAs in
relation to their target genes in the endometrium through-
out the natural cycle as well as the stimulated cycle for
IVF. We plan to further investigate several significantly
regulated miRNAs and associated target gene pathways in
relation to endometrial receptivity and implantation.
Functional study will also be designed to link the impera-
tive miRNAs in potential clinical applications.

Conclusions
The array-based study presented here has revealed several
findings: 1) there is an expression of a unique set of miRNAs
in the endometium following controlled ovarian stimulation;
2) the level of expression for these miRNAs undergoes sig-
nificant changes during the peri-implantation period; 3) the
expression is influenced by ovarian steroids; 4) expression of
miRNAs may be associated with target genes and gene path-
ways. The miRNAs found to have enriched or depleted tran-
script load during the luteal phase may have specific roles in
the control of endometrial receptivity during the peri- im-
plantation period through regulation of their target genes.
Further studies are necessary to create a detailed expression
profile for these miRNAs as well as their associated target
genes throughout the natural cycle and the stimulated cycle
for IVF in the endometrium. Studies for specifically regu-
lated miRNAs and their target genes as well specific gene
pathways in relation to endometrial receptivity and implant-
ation are also proposed.

Additional file

Additional file 1: Table S1. MiRNA with greater than 2 fold changes
and/or significantly regulated between comparison groups.
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