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Abstract
Cloning by nuclear transfer using mammalian somatic cells has enormous potential application.
However, somatic cloning has been inefficient in all species in which live clones have been
produced. High abortion and fetal mortality rates are commonly observed. These developmental
defects have been attributed to incomplete reprogramming of the somatic nuclei by the cloning
process. Various strategies have been used to improve the efficiency of nuclear transfer, however,
significant breakthroughs are yet to happen. In this review we will discuss studies conducted, in our
laboratories and those of others, to gain a better understanding of nuclear reprogramming. Because
cattle are a species widely used for nuclear transfer studies, and more laboratories have succeeded
in cloning cattle than any other specie, this review will be focused on somatic cell cloning of cattle.

Introduction
Somatic cell cloning (cloning or nuclear transfer) is a tech-
nique in which the nucleus (DNA) of a somatic cell is
transferred into an enucleated metaphase-II oocyte for the
generation of a new individual, genetically identical to the
somatic cell donor (Figure 1). The success of cloning an
entire animal, Dolly, from a differentiated adult mam-
mary epithelial cell [1] has created a revolution in science.
It demonstrated that genes inactivated during tissue differ-
entiation can be completely re-activated by a process
called nuclear reprogramming: the reversion of a differen-
tiated nucleus back to a totipotent status. Somatic cloning
may be used to generate multiple copies of genetically
elite farm animals, to produce transgenic animals for
pharmaceutical protein production or xeno-transplanta-
tion [2–5], or to preserve endangered species. With opti-
mization, it also promises enormous biomedical

potential for therapeutic cloning and allo-transplantation
[6]. In addition to its practical applications, cloning has
become an essential tool for studying gene function [7],
genomic imprinting [8], genomic re-programming [9–
12], regulation of development, genetic diseases, and gene
therapy, as well as many other topics.

One of the most difficult challenges faced, however, is
cloning's low efficiency and high incidence of develop-
mental abnormalities [13–19]. Currently, the efficiency
for nuclear transfer is between 0–10%, i.e., 0–10 live
births after transfer of 100 cloned embryos. Developmen-
tal defects, including abnormalities in cloned fetuses and
placentas, in addition to high rates of pregnancy loss and
neonatal death have been encountered by every research
team studying somatic cloning. It has been proposed that
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low cloning efficiency may be largely attributed to the
incomplete reprogramming of epigenetic signals [20–23].

Factors affecting nuclear reprogramming
Various strategies have been employed to modify donor
cells and the nuclear transfer procedure in attempts to
improve the efficiency of nuclear transfer. Most of these
efforts are focused on donor cells. These include: a) syn-
chrony of the cell cycle stage of donor cells [24–26], as
well as synchrony between donor cells and recipient
oocytes [27,28]; b) using somatic cells from donors of var-
ious ages [29–33], tissue origins [26,34–39], passages
[16,40,41] and culture conditions [42]; c) transfer of stem
cells with low levels of epigenetic marks [43–48]; and d)
modifying epigenetic marks of donor cells with drugs
[49–51]. Although the efficiency of nuclear transfer has
been dramatically improved from the initial success rate
of one live clone born from 277 embryo transfers [1],
none of the aforementioned efforts abolished the com-
mon problems associated with nuclear transfer. These
observations suggest that further studies on nuclear repro-
gramming are needed in order to understand the underly-
ing mechanisms of reprogramming and significantly
improve the ability of the differentiated somatic nuclei to
be reprogrammed. In the following section, we will dis-

cuss several strategies used to improve nuclear transfer
efficiencies.

Serum starvation of donor cells
Serum starvation was used in the creation of Dolly and
was believed essential to the success of nuclear transfer
[1]. Serum starvation induces quiescence of cultured cells,
and arrests them at the cell cycle stage of G0. Most labora-
tories that have succeeded with nuclear transfer have uti-
lized a serum starvation treatment. However, there is a
debate as to whether inducing quiescence is required for
successful nuclear transfer. Cibelli et al. [52] proposed
that G0 was unnecessary and that calves could be pro-
duced from cycling cells. In his study, actively dividing
bovine fibroblasts were used for nuclear transfer and four
calves were born from 28 embryos transferred to 11 recip-
ients. Because 56% of cycling cells in that study were in G1
stage, it is likely that all cloned animals produced in this
study were from donor cells at G1 stage. Cells at G2, S or
M would not be expected to generate cloned animals in
this study because they are incompatible with the recipi-
ent oocytes used. This study demonstrated that cells at G1
stage can produce live cloned animals and G0 induction
is not essential.

Schematic diagram of the somatic cloning processFigure 1
Schematic diagram of the somatic cloning process. Cells are collected from donor (a) and cultured in vitro (b). A matured 
oocyte (c) is then enucleated (d) and a donor cell is transferred into the enucleated oocyte (e). The somatic cell and the oocyte 
is then fused (f) and the embryos is allowed to develop to a blastocyst in vitro (g). The blastocyst can then be transferred to a 
recipient (h) and cloned animals are born after completion of gestation (i).

a). Donor animal

b). Donor cell culture

h). Transfer to recipients

e). Nuclear transfer f). Cell fusion
d). Enucleationc). Matured 

oocytes
g). Cloned embryo 

development

i). Clone birth
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Since the report of Cibelli and colleagues, many laborato-
ries have compared nuclear transfer using donor cells with
and without serum starvation. In our study, we used cells
from a 17-year old male Japanese Black beef bull and
found that serum starvation was not required for success-
ful cloning because cloned embryos and animals were
produced from cells not subjected to serum starvation
(Table 1) [16]. Furthermore, serum starvation did not
have a beneficial effect on the blastocyst development of
cloned embryos.

In other studies in which serum starvation vs. no starva-
tion were directly compared, evidence was found that
both quiescent and proliferating somatic donor cells can
be fully reprogrammed after nuclear transfer and result in
viable offspring [25,26,29,53,54]. However, it is still
debatable which cell cycle stage, G0 or G1, result in the
best cloning efficiency. Interestingly, Zechkerchenko et al.
[53] observed a positive effect of serum starvation on the
efficiency of nuclear transfer using bovine fetal fibrob-
lasts. Although Cho et al. [55] did not observe an
improvement in blastocyst rate from any of four different
cell types (cumulus, fibroblast, uterine and oviduct epi-
thelial cells). Similar observations were noted by Hills et
al. [29] who reported that serum starvation of adult donor
cells did not improve development rates of cloned
embryos to blastocyst, but when fetal cells were serum-
starved, there was a significant increase in their blastocyst
development. Conversely, Rho et al. [54] found that fetal
transgenic lines were not different in blastocyst develop-
ment with or without serum starvation or confluency.

Recently, Kasinathan et al. [25] evaluated methods for
generating G0 and G1 cell populations and compared
their development following cloning. They found that a
high degree of confluence was more effective than serum
starvation for arresting cells in G0, and G1 cells could be
obtained using a "shake-off" procedure. In this study, no
differences in in vitro development were observed
between embryos derived from the high-confluence cells
(G0) or from the "shaken-off" cells (G1). Nevertheless,
when embryos from each treatment were transferred into
50 recipients, five calves (10% of embryos transferred)

were obtained from embryos derived from the "shake-off"
cells, whereas no embryos from the confluent cells sur-
vived beyond 180 days of gestation. Kasinathan et al. [25]
concluded that nuclear transfer donor cell cycle stage is
important, particularly effecting late fetal development,
and that actively dividing G1 cells support higher devel-
opment rates than cells in G0. Despite the fact that Kasi-
nathan's study did not produce live clones from G0 cells,
a high nuclear transfer success rate was obtained by Cho
et al. [55] who subjected donor cells to serum starvation
and found no improvement in blastocyst development
from adult donor cells, but resulted in a 27.3% calving
rate.

To further complicate the matter, Wells et al. [26] com-
pared two different types of non-transfected bovine fetal
fibroblasts (BFFs) that were synchronized in G0, G1 or
different phases within G1. They showed that serum star-
vation into G0 resulted in a significantly higher percent-
age of viable calves at term than did synchronization in
early G1 or late G1. For transgenic fibroblasts, however,
cells selected in G1 showed significantly higher develop-
ment to term of calves and higher post-natal survival to
weaning, than cells in G0. They suggest that it may be nec-
essary to coordinate donor cell type and cell cycle stage to
maximize overall cloning efficiency.

In summary, it is clear that quiescence is not necessary for
the success of nuclear transfer because cells not subjected
to serum starvation can also produce live clones. Even so,
it remains unclear which cell cycle stage, G0 or G1,
imparts a higher nuclear transfer efficiency. This question
will continue to be debated until large-scale nuclear trans-
fer studies can be conducted.

Cloning competence of various somatic cell 
types
Many somatic cell types, including mammary epithelial
cells, ovarian cumulus cells, fibroblast cells from skin and
internal organs, various internal organ cells, Sertoli cells
[38,56], macrophage [56] and blood leukocytes [34,35]
have been successfully utilized for nuclear transfer. A clear
consensus, however, has not yet been reached as to the
superior somatic cell type for nuclear transfer. This is due
in part to the fact that different laboratories employ
diverse procedures; and cell culture, nuclear transfer, and
micromanipulation all require critical technical skills. In
order to make these comparisons valid, the procedures
and techniques used, as well as the skill of lab personnel,
must be identical for each donor animal and cell type. To
compare the competence of different cell types for repro-
gramming by cloning, we avoided animal variation by
looking at the cloning competence of three cell types:
ovarian cumulus, mammary epithelial and skin fibroblast

Table 1: Development of embryos cloned from donor cells from 
a 17-year old bull with and without serum starvation treatment

Serum 
starvation

No. 
oocytes

No (%) 
fused

No (%) 
cleaved

No (%) 
blastocysts

Yes 288 114 (40) 75 (66) 24 (21)a

No 282 102 (36) 79 (78) 28 (28)a

Values with the same superscripts are not significantly different (P > 
0.05).
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cells, all from the same donor animal, a 13-year-old elite
diary cow.

The ability of donor cells to be reprogrammed was
assessed by the development of cloned embryos in vitro
and by the birth of cloned calves following embryo trans-
fer. As shown in Tables 2 and 3, although no differences
were detected in the cleavage rates of embryos from three
different cell types, cumulus cells produced the highest
rate of blastocyst development in this study and resulted
in 6 full-term cloned calves. Furthermore, four out of the
six calves derived from cumulus cells survived and were
still healthy at nearly 4 years of age (Table 3). In contrast,
the poorest in vitro development, and no full-term sur-
vival, was obtained with mammary epithelial cells. Skin
fibroblast cells resulted in an intermediate rate of in vitro
development and gave rise to 4 full-term cloned calves.

Our results showed that the donor cell type can signifi-
cantly affect embryo development in vitro as well as in
vivo. Cumulus cells proved to be the most effective cell
type for somatic cloning according to both the in vitro
development test as well as full-term survival. These
results suggest that DNA from cumulus cells is more effec-
tively reprogrammed following nuclear transfer. Our
results agreed with those obtained in mice [57] where they
compared the nuclear transfer efficiency of neuronal, Ser-
toli and cumulus cells, and obtained the best live birth

rate from cumulus cell-derived cloned embryos. Further-
more, it was reported that cumulus cell-derived cloned
mice do not have widespread dysregulation of imprinting
[23]. Kato et al. [15,36] compared cells from the liver, tes-
tis, skin, ear, along with cumulus and oviductal cells and
concluded that cumulus and oviduct epithelial cells are
the most suitable for nuclear donors. Evidence supporting
the superiority of cumulus cells for nuclear transfer also
comes from the study of Forsberg et al. [58] who con-
ducted large numbers of embryo transfer in cattle. It was
shown that cumulus cells gave an overall 15.2% calving
rate, while fetal genital ridge cells, and fibroblast cells pro-
duced a 9% calving rate. Adult fibroblast cells, in this
study, gave the lowest calving rate of only 5%.

In summary, among the somatic cell types tested, the con-
sensus from numerous laboratories is that cumulus cells
give the highest cloning efficiency and result in the least
number of abnormalities in cloned animals.

Effect of donor age
By using a design similar to the donor cell type compari-
son, we studied the cloning efficiency of fibroblast cells
from donors of different ages. We found that cells from
fetuses and newborn animals were more efficient in
nuclear transfer. However, when cells from adult animals
were used, little changes were observed in the cloning effi-
ciency of cells from cattle varying in age from 2 to16-
years-old (Table 4).

Similarly, Renard et al. [31], Hills et al. [29] and
Wakayama and Yanagimachi [56] also reported that
development rates of somatic cloned embryo remained
similar regardless of donor age. However, Kato et al. [36]
noted that clones derived from adult cells frequently
aborted in the later stages of pregnancy, and calves devel-
oping to term showed a higher number of abnormalities
than did those derived from newborn or fetal cells. Fors-
berg et al. [58] transferred a large number of cloned
embryos in cattle. They also concluded that, in general,
embryos cloned from fetal cells produced higher preg-
nancy and calving rates than those from adult cells.

Table 2: Summary of in vitro development of cloned embryos 
from different cell types

Cell types No. 
reconstructed 

embryos

Embryo development (%)

Cleavage Blastocyst

Cumulus 92 65a 57a

Fibroblast 110 63a 34b

Epithelium 96 66a 23c

Numbers with different superscripts within columns are significantly 
different (P < 0.05).

Table 3: Summary of embryo transfer and calving of cloned embryos from different cell types

Cell type No. embryo 
Transferred

No. recipients No. (%) calves born Alive to adulthood

Total Pregnant*

Cumulus 109 58 10 6 (5.5)** 4
Fibroblast 57 29 8 4 (7.0)** 0
Epithelium 34 24 1 0 0

*: Pregnancy determined by ultrasound examination at 60 days of gestation. **: A set of twins included.
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In conclusion, it appears that cells from fetuses, as well as
aged adults, can lead to comparable blastocyst develop-
ment of cloned embryos. Nevertheless, fetal cells may be
better than adult cells in producing healthy live births.
This might be due to the fact that the somatic cells of adult
animals have accumulated more genetic mutations/are
more terminally differentiated than fetal cells, and are
thus more likely to fail at full term development.

Effect of cell culture duration (passage numbers)
Our group was the first to directly compare passage effect
of donor cells on the outcome of nuclear transfer [16]. In
our study, we found that cells of later passages (up to 15)
could also support clone development to full term (Table
5).

Comparable to our findings were those of Arat et al. [40]
who established a primary cell line from granulosa cells
and transfected them with the green fluorescence protein
(GFP) gene. Non-transfected cells were used for cloning
between passage 10 and 15 as either serum-starved or
serum-fed donor cells. There were no differences in devel-
opment to the blastocyst stage for nuclear transfer
embryos from transfected or non-transfected or from
serum-starved or serum-fed cells. Blastocyst development
rates of embryos produced from donor cells at passage 15,

however, were significantly higher than those produced
with cells at passage 10, 11, and 13. Developmental
competence of later passages, up to 16 [54] and as high as
36, from fibroblast from a cloned fetus [41], have also
been reported.

The demonstration that later passages can support clone
development is essential for utilizing somatic cloning for
gene-knockout studies, in which single cells must be clon-
ally expanded to generate sufficient cells for nuclear trans-
fer [7]. These afore-mentioned studies suggest that cells of
higher passages were receptive to nuclear reprogramming.
Additional support for this hypothesis comes from a
recent study by Enright et al. [59] who showed that cells
of later passages contain less epigenetic modifications,
i.e., their histones are more acetylated than in earlier pas-
sages. This observation agrees with an earlier notion that
in vitro culture of cells can induce expression of genes that
were not expressed before culture [60,61]. Furthermore,
Hills et al. [62] reported that a greater proportion of late
passage cells (passage 18), vs. earlier passage cells (passage
2), were found to be in G0/G1 whether or not they were
in serum-starved culture conditions.

Effect of modification of pre-existing epigenetic 
marks in donor cells
Histone acetylation and DNA methylation are heritable
modifications of the chromatin that do not involve
changes in gene sequences (epigenetic signals). These epi-
genetic modifications are believed responsible for the der-
ivation of various cell types with the same genetic
makeup. In natural reproduction, relatively low levels of
DNA methylation exist in the gametes, which are further
de-methylated during early embryo development [63,64].
With nuclear transplantation, the somatic donor nucleus
carries the specific epigenetic modifications of its tissue
type, which must be erased during nuclear reprogram-
ming. Therefore, the levels of epigenetic modification
existing in donor cells may affect their reprogrammability
following nuclear transfer. As discussed earlier, a discrep-
ancy in the donor cell's susceptibility to reprogramming
has been observed between different cell types, resulting
in differences in vitro and in vivo development of cloned
embryos. Therefore, treating donor cells with pharmaco-
logical agents to remove some epigenetic marks prior to
nuclear transfer may improve the ability of the donor cells
to be fully reprogrammed by the recipient karyoplast.

Two reagents have been widely used for the alteration of
the levels of epigenetic modification of somatic cells. Tri-
chostatin A (TSA) and 5-aza-deoxy-cytadine (5-aza-dC)
have been found to increase histone acetylation and
decrease DNA methylation, respectively. These changes
have been associated with increases of gene expression.
Recently, we conducted studies in which the pre-existing

Table 4: Cloning competence of cells from donor animals of 
different ages

Donor age No. Oocytes 
used

(%) Development

Cleavage Blastocyst

Fetus (D57) 630 82 48a

New born 302 76 51a

2 years 158 79 38b

10–12 years 424 73 35b

16 years 269 63 37b

Numbers with different superscripts within columns are significantly 
different (P < 0.05).

Table 5: Cloning efficiency of cells at different passages

No. Passage No. NT No. (%) 
fused

No (%) 
cleaved

No. (%) 
blastocyst

5 288 114 (40) 75 (66) 24 (21)a

10 269 115 (43) 72 (63) 43 (37)b

15 264 109 (41) 81 (74) 36 (33)b

Numbers with different superscripts within columns are significantly 
different (P < 0.05).
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epigenetic marks in donor cells were reduced by these
drugs [49]. We found that global epigenetic marks in
donor cells can be modified by treatment with TSA or 5-
aza-dC. Unfortunately, treating donor cells with 5-aza-dC
reduced blastocyst formation of cloned embryos. Previ-
ously, Jones et al. [50] and Zhou et al. [51] treated bovine
fetal fibroblast cells and mouse stem cells with much
higher doses of 5-aza-C (1 or 5 µm) and also found that
blastocyst development of cloned embryos were reduced.
The consensus from these studies [49–51] suggests that
lowering the levels of DNA methylation in donor cells
does not always improve development of cloned
embryos. At high concentrations, 5-aza-dC may have been
cytotoxic to the donor cells. Additionally, prolonged treat-
ment at a lower concentration, as was the case in our
study, may have caused severe hypo-methylation, and
resulted in disrupted expression of essential genes impor-
tant for embryo development. Therefore, further experi-
ments are required to test the effects of lower
concentrations and shorter durations of 5-aza-dC treat-
ment on donor cells.

Treating donor cells with TSA, by contrast, significantly
improved development of cloned embryos. Previous
reports indicated that treatment of mouse stem cells with
TSA reduced development of cloned embryos [51]. The
differences between these findings may be due to the var-
iation in the concentrations of TSA used. Prior to nuclear
transfer, we treated donor cells with a wide range of TSA
concentrations and identified the lowest concentration
capable of inducing histone hyperacetylation (1.25 µM).
The lowest concentration tested (0.08 µM), did not cause
hyperacetylation, but resulted in observable changes in
cell morphology, similar to those described previously
[65]. It was this lower concentration of TSA (0.08 µM)
that improved development of cloned embryos in our
study, while the higher concentration (1.25 µM) inhibited
embryo development. The detrimental effect of a higher
dose of TSA on embryo development may be explained by
the fact that treatment of cells with high concentrations of
TSA causes chromatin breaks and apoptosis [66].

Conclusion
Somatic cell cloning by nuclear transfer is a relatively new
technology with many potential applications. However, at
the current stage of development, the reprogramming of
epigenetic inheritance by nuclear transfer is still incom-
plete. Further efforts and new paradigms are needed to
perfect this technology and extend it to its fullest
potential.
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