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Abstract
Background: CatSper1 and CatSper2 are two recently identified channel-like proteins, which
show sperm specific expression patterns. Through targeted mutagenesis in the mouse, CatSper1
has been shown to be required for fertility, sperm motility and for cAMP induced Ca2+ current in
sperm. Both channels resemble a single pore forming repeat from a four repeat voltage dependent
Ca2+ /Na+ channel. However, neither CatSper1 or CatSper2 have been shown to function as cation
channels when transfected into cells, singly or in conjunction. As the pore forming units of voltage
gated cation channels form a tetramer it has been suggested that the known CatSper proteins
require additional subunits and/or interaction partners to function.

Results: Using in silico gene identification and prediction techniques, we have identified two further
members of the CatSper family, CatSper3 and Catsper4. Each carries a single channel-forming
domain with the predicted pore-loop containing the consensus sequence T×D×W. Each of the new
CatSper genes has evidence for expression in the testis. Furthermore we identified coiled-coil
protein-protein interaction domains in the C-terminal tails of each of the CatSper channels,
implying that CatSper channels 1,2,3 and 4 may interact directly or indirectly to form a functional
tetramer.

Conclusions: The topological and sequence relationship of CatSper1 and CatSper2 to the four
repeat Ca2+ /Na+ channels suggested other members of this family may exist. We have identified a
further two novel CatSper genes, conserved in both the human and mouse genomes. Furthermore,
all four of the CatSper proteins are predicted to contain a common coiled-coil protein-protein
interaction domain in their C-terminal tail. Coupled with expression data this leads to the
hypothesis that the CatSper proteins form a functional hetero-tetrameric channel in sperm.

Background
Channel activities, particularly those of calcium channels,

have been linked to the process of sperm maturation,
motility and to the sperm egg interaction. A number of
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candidate channels have been associated with these proc-
esses, these include the voltage operated Ca2+ channels
alpha1A, 1C and 1E plus beta subunits [1,2], the T-type
voltage operated Ca2+ channels alpha 1G and 1H, cyclic
nucleotide gated (CNG) channels [3] and the transient
receptor potential (TRP) channel TRP2 [4], The evidence
being primarily based on transcript and immuno-staining
studies. However, none of the channels expressed in testes
and sperm have been directly associated with sperm
mobility. Recently, two novel channel-like proteins,
CatSper1 and CatSper2 (Cation channel of Sperm), were
identified to be specifically expressed in spermatozoa and
to be linked to sperm mobility [[5,6]; reviewed in [7]].

The human and mouse CatSper channels, CatSper1 and
CatSper2, both carry a single six-transmembrane span-
ning unit analogous to one of the four repeats found in
voltage-dependent Ca2+ channels [5,6]. Analysis of the
pore forming region within the repeat suggested that
CatSper1 and 2 are Ca2+ selective [5,6]. Further evidence
supporting channel activity has been provided for
CatSper1 by gene-targeting experiments in the mouse [5].
Notably in sperm from the mice carrying two null alleles
for the CatSper1 gene, cAMP and cGMP induced Ca2+

influx is lost. Moreover, CatSper1 has been shown to be
required for normal sperm motility and egg penetration.
However, attempts to define channel activity for CatSper1
and CatSper2 – singly or in conjunction – in heterologous
expression systems have failed [5,6]. This suggests that
additional factor or factors are required to form a func-
tional channel. The fact that CatSper1 and 2 share features
of a single repeat of a four repeat channel suggests that an
additional two members might exist.

Here we describe the prediction of two additional CatSper
channels in the human and mouse genomes, CatSper3
and CatSper4. Both channels contain a single six-trans-
membrane repeat domain, which contain the T×D×W
pore-lining consensus sequence present in CatSper1 and
CatSper2. Based on accompanying EST, cDNA library
source information and Taqman data, both genes are
expressed in testis. Furthermore, we noted that each Cat-
Sper channel is predicted to contain a coiled-coil motif, a
protein-protein interaction interface, in its intra-cellular
C-terminal tail. Based on a common expression pattern
and the fact that each CatSper protein is predicted to con-
tain a coiled-coil domain, we hypothesise that the Cat-
Spers come together to form functional tetrameric
channels either by direct interaction of their coiled-coil
motif or through interaction with additional factors.

Methods
Identification of CatSper3 and 4
PSI-BLAST profiles were constructed from sequence align-
ments of the ion-transport domain of CatSper protein

sequences and calcium channel protein sequences. These
profiles were used as input to the PSI-BLAST algorithm [8]
to search large human and mouse genome based protein
databases for potential novel members of the CatSper pro-
tein family. Two GENSCAN [9] human gene predictions
partially covering the ion transport domain region were
identified. The GENEWISE program [10] was used to
improve and extend the original gene predictions into
full-length proteins using CatSper2 protein sequence as a
template. Orthologous mouse CatSper3 and mouse
CatSper4 sequences were identified by mapping syntenic
regions of CatSper3 and CatSper4 human loci to the
mouse genome. The GENEWISE program was again used
to craft the final mouse proteins from their DNA, seeded
by human CatSper3 and human CatSper4 predictions.
Overlapping EST sequences listed in Table 5 were also
used to improve predictions.

Expression Analysis
Human RNA prepared from non-diseased organs was pur-
chased from either Ambion Europe or Clontech. cDNA
was prepared from 500 ng RNA using random hexamers
and Multiscribe (Applied Biosystems), following manu-
facturer's instructions.

Oligonucleotide primers and probes were designed using
Primer Express software (Applied Biosystems) with a GC-
content of 40–60%, no G-nucleotide at the 5'-end of the
probe, and no more than 4 contiguous Gs. Each primer
and probe was analysed using BLAST (Basic Local Align-
ment Search Tool) [8]. Results confirmed that each oligo-
nucleotide recognises the target sequence with a
specificity >3 bp when compared to other known cDNA's
or genomic sequence represented in the NCBI publicly
available databases [11].

The sequence of the primers and probes directed against
human CatSper4 exon 9 are as follows:

Forward primer: 5'-AAGGACATCCGCCAGATGTC-3'

Reverse primer: 5'-GGCACACCTTTTCCATGCTAA-3'

Probe: 5'-CAACAGCAAGACTTGCTCAGTGCGCT-3'

Expected amplicon size is 70 bp, a test PCR reaction was
carried out under the following conditions; 40 cycles,
95°C 30 seconds, 58°C 30 seconds, 72°C 30 seconds.
Expected amplicon size was confirmed on an agarose gel.

18S rRNA pre-optimised primers and probe were pur-
chased from Applied Biosystems, Foster City, CA.

25 µl PCR reactions were carried out using TaqMan Uni-
versal Master Mix (Applied Biosystems) following
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manufacturer's instructions and as described in Loben-
hofer et al [12].

Each sample reaction contained 100 nM Taqman probe;
300 nM forward primer; 900 nM reverse primer and 15 ng
of cDNA template. Within each experiment, a standard
curve was carried out of a typical tissue sample, from 50
ng to 0.78 ng of cDNA template. From this standard curve,
the amount of actual starting target or 18S cDNA in each
test sample was determined. The levels of target cDNA in
each sample were normalised to the level of expression of
target in a comparative sample. The levels of 18S cDNA in
each sample were normalised to the level of expression of
18S in a comparative sample. The data was then repre-
sented as fold expression of target sequence normalised to
18S expression relative to the level of expression in the
comparative sample, which was set arbitrarily to 1.

Characterisation of the CatSper channel family
CatSper3 and CatSper4 transmembrane regions were pre-
dicted using the TMHMM program [13] and delineated by
analogy with other CatSper and calcium-channel family
members. Coiled-coils were predicted using the COILS
algorithm for each member of the CatSper channel family
[14].

Sequence Alignments and Phylogenetic Tree
Sequence alignments of the CatSper protein family, and
calcium channels were created using CLUSTALW multiple
sequence alignment program [15] and hand-crafted using
the JALVIEW sequence alignment editor [16]. Pairwise
sequence identities presented in tables 6 and 7 were calcu-
lated using the pairwise sequence alignment algorithm
present in the JALVIEW software.

The phylogenetic tree shown in figure 8 was constructed
from sequence alignments of the CatSper protein family
with calcium channel sequences CCAA_HUMAN,
CCAH_HUMAN, CCAG_HUMAN, CCAS_HUMAN,
CCAC_HUMAN over the ion-transport domain region.
PHYLIP [16] PROT-PARS maximum parsimony pro-
gramme was used to build 1000 bootstrap trees from the
sequence alignment. The final tree was obtained using the
CONSENSE programme to select the best tree by majority
rule.

Results
Identification of CatSper 3 and 4
As part of an on going program to identify novel ion chan-
nel encoding genes, ion-channel family sequence profiles
have been used to search sets of human gene predictions.
Two initial GENSCAN [9] predictions of 264 aa and 185
aa mapping to human chromosomes 5q31.1 and 1p35.3
respectively contain features related to the previously
described CatSper genes – namely a single ion-transport

domain and a pore-loop containing the consensus T × D
× W. The predictions have been hand polished using a
combination of GENSCAN and GENEWISE [10] analysis,
coupled with Expressed Sequence Tag (EST) data and
homology between human and mouse chromosomes to
obtain full-length gene models.

Human CatSper3 has eight coding exons, spanning a
region of 43.7 kb giving rise to an open reading frame of
398 aa (Figure 1 and Table 1). The human Catsper3 pre-
diction is supported by 12 ESTs from mixed tissue types
include germ cell tumors and testis (Table 5). Human
Catsper3 also appears in the patent literature, Lexicon
Genetics: WO200066735 and Millenium Pharamaceuti-
cals: WO200194412; as a novel human ion-channel
cloned from a testis library – Lexicon Genetics:
WO200066735; and as a putative sodium channel – Mil-
lenium Pharamaceuticals: WO200194412 (Table 5).
Available tissue distribution information from ESTs and
the patent literature show that human CatSper3 is pre-
dominantly a testis derived transcript although there is
also a suggestion that transcripts are found in other tissues
(Table 5).

In comparison to human CatSper3, the mouse CatSper3
gene spans a region of approximately 24 kb on mouse
chromosome 13 – however, gaps remain in the current
mouse genome assembly and therefore intron sizes can
not be determined precisely (Figure 1 and Table 2). Based
on GENEWISE comparison of the mouse genomic
sequence with the human CatSper3 ORF, the mouse
CatSper3 gene is predicted to encode an open reading
frame of 395 aa. Mouse CatSper 3 is also represented by a
RIKEN cDNA clone (AK014942) [18] from an adult
mouse testis library; however, this encodes a shorter pro-
tein of 382 aa. This is due to use of an alternative splice
acceptor site within the third exon (Msper3v1:Figure 1b
and Table 2). This shorter version is predicted to have a
truncated 2nd transmembrane helices and, therefore, is
unlikely to form a functional ion channel.

Notably, exon 1 of human CatSper3 lies within the 3'UTR
of the DCOHM gene (dimerisation cofactor of hepatocyte
nuclear factor from muscle: Genbank AF499009)[19]
such that the two genes are in a head-to-tail orientation.
The DCOHM cDNA has been isolated from muscle and
kidney libraries, whereas available tissue distribution
information for human CatSper3 points to a predomi-
nantly testis specific expression. Therefore transcriptional
interference is unlikely to occur between the two genes.
Using the human DCOHM as a query sequence, an ORF
of 90% sequence identity can also be found in the mouse
genome 8.5 kb upstream of the mouse CatSper3 start
codon. Therefore a similar gene arrangement to the
human loci exists in the mouse (data not shown).
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Genomic organisation of the human and mouse CatSper3 genesFigure 1
Genomic organisation of the human and mouse CatSper3 genes. (a) Schematic of human and mouse CatSper3 genes on human 
chromosome 5q31.1 and mouse chromosome 13 respectively. Horizontal line represent human genome assembly NCBI 31 
and mouse genome assembly NCBI 03, filled boxes represent coding regions, un-filled boxes represent non-coding regions (b) 
Comparison of exon boundaries between human and mouse genes, exons are shaded alternately, MSper3v1 and MSper3v2, 
represent the predicted splice variants of mouse CatSper3. Predicted transmembrane regions are underlined, the pore forming 
region is underlined with a dashed line.

Table 1: Exon/intron boundaries of human CATSPER3

Exon Exon Length bp Splice Acceptor* Splice Donor* Intron Length bp

1 167 Not Applicable AATTTAAgtaaata 1848
2 154 ttgacagGAGGAAC TCTTGAGgtaagca 26179
3 240 cctgtagTTCTCGG CATCCGGgtgagtg 11443
4 183 cttgcagACGCTGA GGCCACGgtactgt 700
5 141 tgagcagGTTGATG CACAGAGgtgaggc 388
6 120 tctctagGACTCCA CATACAGgtgagtg 881
7 158 tctctagAAAAATG TCCACAAgtcagtt 989
8 >176 ttttcagGCTTCAA Not Applicable N/A

* Intronic sequences are in lower case

= 2kb

ATG TGA

Mouse chr13  

a)

b)

Human chr5q31.1  

ATG TGA

MSper3v1      MSQHFHHNPVRVKSGSLFATASEALQARLSKIKRKDKECQAYFRKVIKSTFFQIVMITTV 
MSper3v2      MSQHFHHNPVRVKSGSLFATASEALQARLSKIKRKDKECQAYFRKVIKSTFFQIVMITTV 
HSper3        MSQHRHQRHSRVISSSPVDTTSVGFCPTFKKFKRNDDECRAFVKRVIMSRFFKIIMISTV 

MSper3v1      TTNSFLLVLGTNYDIQFEFFRTFE-------------FLMKVYVDPITYWKDGYNILDVI
MSper3v2      TTNSFLLVLGTNYDIQFEFFRTFEVSELFFVSVYVCEFLMKVYVDPITYWKDGYNILDVI
HSper3        TSNAFFMALWTSYDIRYRLFRLLEFSEIFFVSICTSELSMKVYVDPINYWKNGYNLLDVI

MSper3v1      ILIILTIPYLLRKIKGNHSAYLHFADGIQSLRILKLISYSRGIRTLIIAVGETVYTVASV
MSper3v2      ILIILTIPYLLRKIKGNHSAYLHFADGIQSLRILKLISYSRGIRTLIIAVGETVYTVASV
HSper3        IIIVMFLPYALRQLMGKQFTYLYIADGMQSLRILKLIGYSQGIRTLITAVGQTVYTVASV

MSper3v1      LTLLFLLMFVFAILGFCLFGVTDRGDLENWGNLASAFFTLFSLATVDGWTDLQEELDKRK
MSper3v2      LTLLFLLMFVFAILGFCLFGVTDRGDLENWGNLASAFFTLFSLATVDGWTDLQEELDKRK
HSper3        LLLLFLLMYIFAILGFCLFGSPDNGDHDNWGNLAAAFFTLFSLATVDGWTDLQKQLDNRE

MSper3v1      FTVSRAFTILFILLASFIFLNMFVGVMIMHTEDSMKKFERDLTLERNLAIMEEKQIILKR 
MSper3v2      FTVSRAFTILFILLASFIFLNMFVGVMIMHTEDSMKKFERDLTLERNLAIMEEKQIILKR
HSper3        FALSRAFTIIFILLASFIFLNMFVGVMIMHTEDSIRKFERELMLEQQEMLMGEKQVILQR

MSper3v1      QQEEVNRLMNTQK-SGSMNFIDMVEGFKKTLRHTDPMVLDDFSTSLSFIDIYLVTLDNQD
MSper3v2      QQEEVNRLMNTQK-SGSMNFIDMVEGFKKTLRHTDPMVLDDFSTSLSFIDIYLVTLDNQD
HSper3        QQEEISRLMHIQKNADCTSFSELVENFKKTLSHTDPMVLDDFGTSLPFIDIYFSTLDYQD

MSper3v1      VIVSKLQELYCEIVNVLSLMLEDMPKESSSSLSGLS--
MSper3v2      VIVSKLQELYCEIVNVLSLMLEDMPKESSSSLSGLS--
HSper3        TTVHKLQELYYEIVHVLSLMLEDLPQEKPQSLEKVDEK
Page 4 of 15
(page number not for citation purposes)



Reproductive Biology and Endocrinology 2003, 1 http://www.RBEj.com/content/1/1/53
However, we do have any information relating to the
extent of the mouse DCOHM 3'UTR as this has not yet
been cloned. Therefore, the mouse DCOHM gene may or
may not extend over the mouse CatSper3 coding exons.

The human CatSper4 gene is predicted to span a region of
12 kb and be comprised of 10 coding exons, (Figure 2a
and Table 3). Human CatSper4 is only partially repre-
sented by a single EST originating from a testis library. In
contrast mouse CatSper4 is present in the databases as a
RIKEN testis derived cDNA (AK077145) [18] and is also
represented by ten ESTs, all of which are either testis
derived or derived from a pooled library containing testis
material.

The mouse CatSper4 gene is located on mouse chromo-
some 4 band D3, it spans a region of 15.3 kb. Unlike the
human CatSper4 the mouse gene possesses 11 coding
exons, the gene structure varying with respect to the
human in the first two exons (Figure 2 and Table 4) oth-
erwise exon/intron boundaries are conserved Figure 2b.

Having found two further members of the CatSper family
in human and mouse genomes a search for orthologues in
Fugu rubripes and Danio rerio was carried out. Searching
with CatSper sequences against raw genomic sequence
(TBLASTN) [8] and ENSEMBL[20] protein predictions
(BLASTP)[8] failed to identify any orthologues. Further-
more we failed to identify any channel-like sequence of
less than 400 aa containing a pore-forming region of the
consensus T×D×W. Given the current coverage of the Fugu
genome it is surprising that no CatSper-like sequences
were identified.

Tissue distribution of Human CatSper4
The previously described CatSper sequences, CatSper1
and CatSper2 are expressed in testis and more specifically
spermatocytes. Data from ESTs and patent literature sug-
gest that CatSper3 also shares a common expression pro-

file. As there was limited evidence supporting the human
CatSper4 transcript we carried out a Taqman quantitative
PCR analysis to address expression of the Human
Catsper4 gene. A primer probe set was designed within
exon 9 of human CatSper 4 sequence and tissue expres-
sion profiling was carried out in 18 normal human tissues
as described in Materials and Methods. Figure 3a shows
the correct amplicon size for primers directed against
human CatSper4 exon9 and figure 3b shows the
normalised level of expression of CatSper 4 in the 18 tis-
sues. These data confirm the prediction of testis specific
expression. Low expression levels were detected in pla-
centa and lung, whereas no significant expression was
detected in any other tissue.

Protein features
CatSper 3 and 4 are predicted to contain 6 transmem-
brane regions denoted S1–S6 in figures 4a and 4b. S1–S4
are close together joined by short loop regions. A longer
loop region separates S5 and S6 and contains a short con-
served hydrophobic stretch – see Figure 4 for topology car-
toon of the CatSper family. The arrangement of these
transmembrane helices is characteristic of the voltage
gated channel ion transport domain found in voltage-
gated K+, Ca2+ and Na+ channels, and reported for the
other members of the CatSper channel family [5,6]. This
domain comprises 6 transmembrane helices with a hydro-
phobic channel pore loop and voltage-sensing region.

The voltage sensor lies within S4 transmembrane helix
and is involved in channel activation via positively
charged residues positioned every 3–4 amino acids [21].
Sequence alignment of S4 helices of selected voltage gated
Ca2+ channels with CatSper family (Figure 6a) shows that
a pattern of regular repeating basic residues (arginine/
lysine) are also present in the CatSper1 and CatSper2 S4
helices. However, in CatSper3 and CatSper4 subunits the
repeating charged residues are conserved to a lesser extent
with only two of the four charged residues found, suggest-

Table 2: Exon/intron boundaries of mouse CATSPER3

Exon Exon Length bp Splice Acceptor* Splice Donor* Intron Length bp

1 181 Not Applicable AGATTAAgtaagta 1737#

2 154 ttggcagGAGGAAG CTTTGAGgtgagct 12363v1/12324v2#

3v1 201 ctgcgagTTCCTCA CATCAGGgtgagtc 5803
3v2 240 actgcagGTCTCAG CATCAGGgtgagtc 5803
4 183 cttgcagACACTCA GGCCACGgtactga 746
5 141 tgaccagGTTGATG CACGGAGgtgagga 381
6 120 gtgttagGATTCCA CACACAGgtcggat 1662
7 155 cctctagAAAAGTG TCAGCAAgtgagtt 647
8 >175 gttctagGCTTCAG Not Applicable N/A

* Intronic sequences are in lower case. # Estimated intron size due to gaps in genome assembly.
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Genomic organisation of the human and mouse CatSper4 genesFigure 2
Genomic organisation of the human and mouse CatSper4 genes. (a) Gene structure of human and mouse CatSper4 genes on 
human chromosome 1p35.3 and mouse chromosome 4 band D3 respectively. Horizontal line represent human genome assem-
bly NCBI 31 and mouse genome assembly NCBI 03, filled boxes represent coding regions, un-filled boxes represent non-cod-
ing regions. (b) Comparison of exon boundaries between human and mouse genes, exons are shaded alternately. Predicted 
transmembrane regions are underlined, the pore forming region is underlined with a dashed line.

Table 3: Exon/intron boundaries of human CATSPER4

Exon Exon Length bp Splice Acceptor* Splice Donor* Intron Length bp

1 >213 Not Applicable CAAAGCGgtaagga 445
2 144 cttccagGACGCCT GGACCAGgtgggat 2355
3 102 catgtagAAACACT CTGGAAGgtgagat 3796
4 98 tccccagGACGGCT CTCTCAGgtgagcg 172
5 121 gccacagGGCGCTT CATGCTGgtcagtg 207
6 134 ctgacagGTTTTTT ACTTCCAgtgagtg 1463
7 175 tctgcagGACAGAG TAGTGAGgtgcgtg 770
8 212 ttcccagACAGGCG TCAACATgtagggg 311
9 166 cccccagGATTGTT GGAAAAGgtgtgcc 968
10 >54 tttgcagGTTCATG Not Applicable N/A

* Intronic sequences are in lower case.

=2kb

Human chr 1p35.3  

ATG TGA

Mouse chr 4 band D3  

ATG TGA

MSper4 MSEKHK-WWQQVENIDITHLGPK-----------------------RKAYELLGRHEEQV
HSper4 MRDNEKAWWQQWTSHTGLEGWGGTQEDRMGFGGAVAALRGRPSPLQSTIHESYGRPEEQV

MSper4 LINRRDVMEKKDAWDVQEFITQMYIKQLLRHPAFQLLLAFLLLSNAITIALRTNSYLGQK
HSper4 LINRQEITNKADAWDMQEFITHMYIKQLLRHPAFQLLLALLLVINAITIALRTNSYLDQK

MSper4 HYELFSTIDDIVLTILICEVLLGWLNGFWIFWKDGWNILNFAIVFILFMGFFIKQLDMVA
HSper4 HYELFSTIDDIVLTILLCEVLLGWLNGFWIFWKDGWNILNFIIVFILLLRFFINEINIPS

MSper4 ITYPLRVLRLVHVCMAVEPLARIIKVILQSMPDLANVMALILFFMLVFSVFGVTLFGAFV
HSper4 INYTLRALRLVHVCMAVEPLARIIRVILQSVPDMANIMVLILFFMLVFSVFGVTLFGAFV

MSper4 PKHFQNMGVALYTLFICITQDGWLDIYTDFQMDEREYAMEVGGAIYFAVFITLGAFIGLN
HSper4 PKHFQNIQVALYTLFICITQDGWVDIYSDFQTEKREYAMEIGGAIYFTIFITIGAFIGIN

MSper4 LFVVVVTTNLEQMMKTGEEEGHLNIKFTET-EEDEDWTDELPLVHCTEARKDTSTVPKEP
HSper4 LFVIVVTTNLEQMMKAGEQGQQQRITFSETGAEEEEENDQLPLVHCVVARSEKSGLLQEP

MSper4 LVGGPLSNLTEKTCDNFCLVLEAIQENLMEYKEIREELNMIVEEVSSIRFNQEQQNVILH
HSper4 LAGGPLSNLSENTCDNFCLVLEAIQENLRQYKEIRDELNMIVEEVRAIRFNQEQESEVLN

MSper4 KYTSKSATFLSEPP----EGANKQDLITALVSREKVSDSN-INMVNKHKFSH
HSper4 RRSSTSGSLETTSSKDIRQMSQQQDLLSALVSMEKVHDSSSQILLKKHKSSH

a)

b)
Page 6 of 15
(page number not for citation purposes)



Reproductive Biology and Endocrinology 2003, 1 http://www.RBEj.com/content/1/1/53
Table 4: Exon/intron boundaries of mouse CATSPER4

Exon Exon Length bp Splice Acceptor* Splice Donor* Intron Length bp

1 >111 Not Applicable TCCTAGGgtgggtg 43
2 75 tctgcagAGAAAAG GAAGAAGgtaagga 401
3 144 cttccagGATGCCT CGGTCAGgtgggat 4939
4 102 catgtagAAACATT CTGGAAGgtgagct 3012
5 98 tattcagGATGGCT CTCTCAGgtgagtt 146
6 121 cccacagGGTGCTC CATGCTGgtgagtg 200
7 134 ctgacagGTATTCT ACTTCCAgtgagta 2486
8 175 ttcccagGATGGAT TACTGAGgtgagcc 1272
9 209 ttcccagACAGAAG TCAACATgtagggg 300
10 154 cccccagGATCGTG GGAAAAGgtgcgtg 673
11 400(incl 3'UTR) tttgcagGTGTCTG Not Applicable N/A

* Intronic sequences are in lower case. # Estimated intron size due to gaps in genome assembly

Table 5: Representation of CATSPER 3 and 4 in sequence databases and associated tissue sources.

Gene Genomic cDNA EST Patent

Human 
CATSPER3

AC004764 Not present BI827754 901 bp (Brain-medulla) AX358304 – WO0194412 (No Tissue 
distribution)

AI219834 337 bp (Pooled Testis-lung-B cell) AX047619 – WO0066735 
(Predominantly Testis by Northern blot)

AI027609 362 bp (Testis)
AW003058 306 bp (Germ cell tumor)
AW972257 417 bp (Colon cancer)
AW593391 306 bp (Germ cell tumor)
AW590264 306 bp (Germ cell tumor)
AW003002 306 bp (Germ cell tumor)
AW008956 258 bp (Colon)
AW007549 256 bp (Colon)
AA527520 255 bp (Colon)
BX280235 212 bp (Pooled Testis-lung-B-cell)

Mouse 
CATSPER3

AC129780 AK014942 1312 
bp (Adult testis)

BY714458 951 bp (Adult testis) Not present

BB679726 390 bp (Adult testis)
BY510167 408 bp (Bone marrow 
macrophage)
CA465993 758 bp (Testis)
BF147131 335 bp (Testis)
AV043837 252 bp (Testis)
AV280964 263 bp (Adult testis)
BB017226 225 bp (Adult testis)
BB013542 244 bp (Adult testis)

Human 
CATSPER4

AL355877 Not present AA421134 518 bp (Testis) Not present

Mouse 
CATSPER4

AL627314 AK077145 1713 
bp (Adult testis)

AV280157 622 bp (Adult testis)                         Not present

BB617038 605 bp (Adult testis)
BY096088 378 bp (Adult testis)
BY088873 365 bp (Pooled adult tissue)
BY454059 444 bp (Pooled adult tissue)
BU961662 795 bp (Testis)
BY459016 398 bp (Adult testis)
AV269930 241 bp (Adult testis)
AV281460 247 bp (Adult testis)
AV263155 176 bp (Adult testis)
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ing a reduced voltage dependent mechanism of activation
[21].

Ion specificity is determined by a pore consensus
sequence [T/S] × [D/E] × W in voltage gated Calcium
channels [22]. Sequence analysis of this region in the Cat-
Spers highlights the presence of a similar conserved motif
T×D×W (Figure 5 and 6b) suggesting that the CatSper ion
channels may be selective for calcium ions, as previously
discussed for CatSper1 [5]. BLASTP homology searches
also link the CatSpers most closely with the T-type Cal-
cium channels.

Each member of the CatSper family contains a coiled-coil
domain at its C terminus as predicted by COILS pro-
gramme [14] and shown in Figure 7. Coiled-coils are well
characterised as potential protein-protein interaction
domains. They have also been found in multi-pass mem-
brane proteins such as GABABR1 and GABABR2 to be the
site of receptor dimerisation [23,24]. Coiled-coils have
also been found in multi-protein complexes such as the
SNARE complex [25]. The identification of a common
protein-protein interaction domain in all four of the Cat-
Sper proteins within the context of a common expression
pattern and relationship to four-repeat calcium channels
suggest that the CatSper ion channel subunits assemble as
tetramers.

CatSper3 and CatSper4 extend the Calcium channel 
family
The CatSper ion channel subunits are distant in sequence
relationship; sequence identity ranges between 21.6%
and 26.5% across the ion transport domain (Table 6).
This low sequence identity is in contrast with that
observed for the voltage-gated sodium and calcium chan-
nel families. Calcium L-type calcium channels generally
share ~25% sequence identity over full their length
sequence and upwards of 75% sequence identity between
their corresponding ion-transport repeat regions (Table
7). These observations are further supported by the
phylogenetic tree (Figure 8) which shows that each repeat
is more closely related to its analogous repeat in a
paralagoue than to the other repeats in the same gene
unit, i.e. repeat I in alpha 1S is more closely related to
repeat I in alpha 1T than to repeat II in alpha 1S. Figure 9
shows the repeat topology of a voltage-gated cation chan-
nel. In addition, repeats 1 and 3, and repeats 2 and 4 share
common ancestry with all four repeats stemming from a
single common ancestor (Figure 8). In contrast, the
CatSper family members do not associate with any one
particular repeat, this therefore raises questions over the
detailed evolutionary history of the CatSper family.

Table 6: Sequence identities shown between human CatSper family members

Hsper1 Hsper2 Hsper3 Hsper4

Hsper 1 100 21.95 22.18 27.08
Hsper 2 21.95 100 23.33 26.42
Hsper 3 22.18 23.33 100 23.93
Hsper 4 27.08 26.42 23.93 100

Table 7: Sequence identities shown between calcium channel repeats within the same gene and orthologous repeats. CcaH and CcaG 
sequences correspond with Swissprot identifiers CCAH_HUMAN and CCAG_HUMAN T type calcium channels. CcaC and CcaS 
represent Swissprot sequences CCAS_HUMAN and CCAC_HUMAN L type calcium channels.

CcaH I CcaH II CcaH III CcaH IV CcaG I CcaG II CcaG III CcaG IV

CcaH I 100 23.24 27.87 20.69 75.68 22.41 27.79 23.26
CcaH II 23.24 100 26.10 26.77 22.41 88.41 27.94 26.29
CcaH III 27.87 26.10 100 28.36 27.79 27.94 80.15 29.45
CcaH IV 20.69 26.77 28.36 100 23.26 26.29 29.45 79.92

CcaS I CcaS II CcaS III CcaS IV CcaC I CcaC II CcaC III CcaC IV
CcaS I 100 23.26 28.71 22.62 71.96 25.08 24.38 19.94
CcaS II 23.26 100 25.98 26.28 25.08 77.08 23.33 24.32
CcaS III 28.71 25.98 100 21.24 24.38 23.33 70.71 22.11
CcaS IV 22.26 26.28 21.24 100 19.94 24.32 22.11 67.91
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Discussion
Here, we applied bioinformatic tools in a focused
approach to identify and characterise novel ion-channel
genes in both human and mouse genomes. We identified
two genes, CatSper3 and CatSper4, which extend the Cat-
Sper ion channel-like family to four members in human
and mouse. As previously described for CatSper1 and 2
[5,6], CatSper3 and 4 contain a single ion transport
domain comprised of 6 transmembrane spanning
regions, where the fourth transmembrane region
resembles a voltage sensor and a pore forming region lies
between transmembrane regions 5 and 6. The pore con-
tains the consensus sequence T×D×W indicative of a prob-
able calcium selective channel. Available expression data
suggest that CatSper3 and 4 are present in testis and may
also be found in other tissues. To date, CatSper1 and 2
have not shown channel activity when expressed in heter-
ologous systems alone or when co-expressed. One expla-
nation is that additional factors are required for full

function. The identification of two more CatSper like
channels both of which show expression in testis and
both of which resemble single pore forming repeats from
a multi-repeat channel, may well provide the missing fac-
tors required for a functional CatSper channel to be
formed.

Additionally, through our bioinformatic analysis of the
CatSper family we have annotated coiled-coil domains in
all four of the CatSper channels. Alpha helical coiled-coil
structural motifs are involved in subunit multimerisation
of a large number of proteins. For example, the GABAB
receptor assembly is mediated by short (~30 aa) parallel
coiled-coil alpha helices in the C-terminal of the
GABABR1 and GABABR2 receptors [24]. Coiled-coil
domains can also mediate formation of large multi-pro-
tein complexes such as the SNARE complex whose core
comprises a hetero-tetrameric coiled-coil [25]. Therefore a
precedent exists for a four coiled-coil complex. Identifica-

Normalised expression of Human CatSper4 in 18 normal human tissuesFigure 3
Normalised expression of Human CatSper4 in 18 normal human tissues. (a) Amplicon size of human CatSper4, amplified from 
exon9. Lane 1 no template control, Lane 2 15 ng Testis cDNA, Lane 3 40 ng testis cDNA, Lane 4 DNA size marker ascending 
in 100 bp intervals from 100 bp upwards (Eurogentec). (b) Levels of human CatSper4 mRNA in 18 normal human tissues were 
determined using Taqman quantitative RT-PCR. Each sample was quantitated in 3 individual experiments, the mean ± SEM for 
the multiple experiments are shown. Tissue names followed by (2) represents an alternative RNA supplier.

70 bp

a) b)
1 2 3 4
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Topology of the CatSper channelsFigure 4
Topology of the CatSper channels. (a) Topology diagram of CatSper1 protein based on Ren et al. (b) Topology diagram of 
CatSper2,3 and 4 proteins.
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tion of the coiled-coil domains in the CatSper channels
provides an experimentally testable mechanism for Cat-
Sper channel tetramerisation. This in theory could involve
interaction at the coiled coil domain directly, or via intra-
cellular accessory proteins that interact with the CatSper
subunits via the coiled coil motif, anchoring the subunits
together. A proposed model for subunit interaction is
shown in Figure 10. One question raised by the CatSper1
knockout experiment is how are the channels regulated by
cAMP/cGMP? We have searched for cyclic nucleotide
binding sites on the CatSper subunits, however no likely
domains have been identified, it is therefore possible that
this property is conferred by an auxiliary subunit and
therefore this would favour the model proposed in Figure
10c.

The above model for CatSper subunits function and inter-
actions could be tested in a variety of experiments.
Function may be tested through targeted mutagenesis
experiments of the new CatSper subunits in mice as
described by Ren et al [5]. Expression of all four subunits
in an heterologous expression system could be attempted
with the aim of reconstituting a functional channel. To
identifying interactions via the coiled-coil domain, the
intracellular domain of the CatSper subunits could be
used as the "bait" in the yest two-hybrid system. This sys-
tem was successful in identifying the GABABR2 receptor
as the co-receptor GABABR1 [23] via a coiled-coil domain.
Certainly the identification of two further CatSper
subunits provides further possibilities in which to test this

Multiple sequence alignment of the CatSper ion channel family ion-transport domainFigure 5
Multiple sequence alignment of the CatSper ion channel family ion-transport domain. Transmembrane regions are underlined 
in black and the S4 voltage sensor transmembrane helix is highlighted in red. The channel pore consensus sequence motif is 
boxed in blue. Genbank accession codes for the published Catsper genes are as follows: MSper1 AF407332, HSper1 AF407333, 
MSper2 AF411816, HSper2v1 AF411817, HSper2v2 AF411818, HSper2v3 AF411819.
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Alignment of Human CatSper voltage sensor and pore forming regions with selected L- and T-type calcium channelsFigure 6
Alignment of Human CatSper voltage sensor and pore forming regions with selected L- and T-type calcium channels. (a) Volt-
age sensor region of CatSper human protein sequences aligned with repeats 1–4 of selected human L- and T-type calcium 
channels; CCAA_Human – calcium channel alpha1A (SWISSPROT O00555), CCAS_Human – calcium channel 1S (SWISS-
PROT Q13698) and CCAH_Human – calcium channel 1H (SWISSPROT O95180). (b) Pore selectivity region of CatSper ion 
channel family aligned with selected human L- and T-type calcium channels ion transport repeats.

Results from CatSper channel coiled-coil predictionsFigure 7
Results from CatSper channel coiled-coil predictions. (a) CatSper1 human coiled-coil prediction, (b) CatSper2 human coiled-
coil prediction, (c) CatSper3 coiled-coil prediction and (d) CatSper4 coiled-coil prediction. X-axis, amino acid residue number-
ing of query sequence. Y-axis, probability score for a sequence adopting a coiled-coil configuration calculated for a scanning 
window of 14, 21 or 28 amino acid residues.

a) b)

a) b)

c) d)
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Un-rooted phylogenetic tree showing CatSper family members with selected T- and L-type calcium channelsFigure 8
Un-rooted phylogenetic tree showing CatSper family members with selected T- and L-type calcium channels. Repeats 1–4 of 
selected human L- and T-type calcium channels; CCAA_Human – calcium channel alpha1A (SWISSPROT O00555), 
CCAC_Human – calcium channel alpha1C (SWISSPROT Q13936), CCAG_Human – calcium channel alpha1G (SWISSPROT 
O43497), CCAH_Human – calcium channel 1H (SWISSPROT O95180) and CCAS_Human – calcium channel alpha1S (SWISS-
PROT Q13698).

Topology diagram for the L-type and T-type four repeat voltage gated calcium channel familiesFigure 9
Topology diagram for the L-type and T-type four repeat voltage gated calcium channel families.

Membrane

Extracellular

Intracellular

+
+
+

+
+
+

+
+
+

+
+
+

Repeat I Repeat II Repeat III Repeat IV
Page 13 of 15
(page number not for citation purposes)



Reproductive Biology and Endocrinology 2003, 1 http://www.RBEj.com/content/1/1/53
family of protein's function in sperm mobility and
fertility.

An interesting question posed by identification of four
CatSper genes is how did the CatSper family evolve.
Sequence comparison between family members show
each CatSper paralogoue to be equally distant from each
other, i.e. only around 25% sequence ID. Low sequence
identity would argue for an early duplication event or that
the CatSper subunits have resulted from convergent evo-
lution of ion channel genes at different chromosomes
towards a common function. However, we cannot detect
any CatSper like channels in species lower than mouse.
This observation would argue for a more recent
evolutionary event or rapid evolution. It is notable that
sequence identity between repeats within a multi-repeat
channel share similar identities to those shared between
the CatSper channels ie around 25%. We explored the
possibility that a particular CatSper channel would repre-
sent one of the four repeating units found in channels
such as the L-type calcium channel. However, we cannot
form a direct one-to-one relationship between a particular
channel repeat and a CatSper unit to support this theory.

CatSper ion-channels present themselves as attractive
potential targets for non-hormonal contraceptives. Benoff
et al [26] have already illustrated the reversible
contraceptive effect of Nifedipine, a widely used calcium-
channel blocker in the treatment of high blood pressure
and migraine. These effects are mediated via voltage-gated
calcium-channels, primarily the L-type voltage-gated
channels. The relationship of the CatSper subunits to the
voltage-gated calcium channels, their established role in
sperm motility and their testis restricted expression
pattern, therefore makes them a highly validated target for
the identification of novel contraceptives.

Concluding remarks
Based on our identification of two novel CatSper channels
and interaction domains we have presented a theoretical
model that suggests the CatSper proteins form subunits of
a hetero-tetrameric Ca2+ channel in sperm. We also further
suggest that experimental determination of this hypothe-
sis and pharmacological studies may lead to the identifi-
cation of non-hormonal contraceptives.

Author's contributions
AL identified the human and mouse CatSper4 genes and
was responsible for the majority of the bioinformatics in

Theoretical model for the formation of a CatSper hetero-terameric channelFigure 10
Theoretical model for the formation of a CatSper hetero-terameric channel. (a) Diagramatic representation of CatSper subu-
nits 1–4. (b) In this model a tetrameric channel is formed via direct interaction of the coiled-coil domains. (c) In this model the 
channel is brought together via an auxiliary protein or proteins, interaction being mediated via the coiled-coil domains.
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